
Transactions of NAMRI/SME                                                   569                                                                  Volume XXIX, 2001

Abstract

In order for a distributed agent based system to operate in
an autonomous fashion, there must be a central coordina-
tion and communication framework in which the agents (or
individual software applications) function.  Such a frame-
work has been developed and named the Design Consultant
Shell (DCS).  This framework is flexible in that it allows a
wide variety of software applications to be integrated into
the framework and to be remotely accessed.  The functional-
ity of the DCS has been demonstrated by integrating two
process planning agents for 3-axis milling into a remotely
accessed multi-agent system.  One of the process planners
minimizes machining time, while the other ensures edge
quality by minimizing burr formation.  Cost estimation, uti-
lizing the data from these process planners is also demon-
strated.

Introduction

Distributed agent systems in the field of CAD/CAM are
increasing in prevalence and importance.  As part of this
project, a variety of process planning agents for 3-axis mill-
ing have been developed (Dornfeld, et al 1999).  These
agents, which have differing objectives, have been in use for
some time.  A brief description of two of these process plan-
ners, one which optimizes machining time and one which
minimizes burr formation (Wright, et al 2000), will be
given.  The method in which information returned from the
process planners is used to estimate manufacturing cost will
also be explained. In order for these agents to function
together in a distributed system there must be a central coor-
dination and communication framework in which the indi-
vidual agents  can operate.  The framework, which has been
named the Design Consultant Shell (DCS) because it facili-
tates the coordination of a group of distributed software
tools into a manufacturing consultant for the designer, will
be described in detail.  Additionally, a case study in which
the two process planning agents  have been added to the
DCS and used to generate toolpaths for a base plate
designed in a common CAD system will be described.

The Core Process Planning Agent

The first process planner, which has the goal of minimizing
machining time, has been developed as part of the CyberCut
system (Dornfeld, et al 1999).  The core of this system
consists of a process planner comprised of the
macroplanner, microplanner and the tool path planners. The
process planner is a feature-based system (i.e. it accepts
manufacturing features as input and works almost
exclusively with these features). 

Feature-based systems have two means of acquiring
features (Shah & Mäntylä 1995):
• features may be extracted from a geometry description 

of the part.
• the part can be designed using manufacturing features. 

The first approach is called feature recognition while the
second is called design-by-features. CyberCut supports both
methods to acquire features. Thus the designer can create a
description of the part using a commercial CAD system
such as SDRC I-Deas or Pro-E. The feature recognition
module accepts a boundary representation of the component
as an ACIS file. Any CAD system that can directly output a
boundary representation in ACIS format or export the
geometry to STEP or SIF (Solid Interchange Format)
(McMains et al 1998) may be used to describe the part. 

Alternatively, the designer may choose to describe the part
directly with manufacturing features using the WebCAD
interface (Kim et al 1999) and export the part description
using the DSG (Destructive Solid Geometry) format. The
output of the feature recognition system is a feature descrip-
tion of the part, while the DSG file is passed through a con-
verter that transforms the DSG file to the same description
as that of the feature recognition system. 

The process planner is comprised of three main
components: the macroplanner, the microplanner and the
tool-path planner (ElMaraghy 1993). The macroplanner has
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a global view of the component and concerns itself with the
selection of setups, allocating features to setups, fixturing,
setup and tool sequencing, generating high-level
instructions to the machinist such as orientation of the
components, and determination of datum faces. The
microplanner plans for one feature at a time. It is
responsible for the selection of tools for the machining of
the feature, cutting parameters for the tool concerned, and
collision detection of the chosen tools with the part and the
fixtures. The tool-path planner determines the tool motions
required to machine the material designated by the
macroplanner and the microplanner and outputs the
machine codes (G&M codes) for the CNC machine.  All
steps are performed in such a way as to reduce the total
machining time as much as possible.

Burr Minimization Tool Path Planning Agent

Stringent requirements on having a precise edge necessitate
deviation from the conventional methods of planning that
are based on minimizing the total machining costs. A signif-
icant amount of research has been done on identifying and
improving the parameters that affect edge finish (Hassa-
montr 1998, Chu and Dornfeld 1999). The edge precision
planning system that has been developed (Rangarajan et al
2000) uses special tool path planning algorithms to avoid
burr formation. The exit burr is the most critical type of burr
to avoid in face milling. Exit burr formation is minimized
by preventing the cutting edge of the tool from moving out
of the workpiece while removing material (Chu and Dorn-
feld 1999). 

The core idea of tool path design for exit burr minimization
is to mill the edges of the part first with special tool paths
that remove the potential of subsequent tool paths to create
exit burrs.  Figure 1 illustrates how this is accomplished for
a simple rectangular block.  The first tool pass is along the
edges of the part as shown in Figure 1 (b).  Notice that the
rotation of the tool is such that the leading edge enters the
part (down milling) rather than exits the part (conventional
milling).  Figure 1 (b) also shows that the tool enters the part
along an arc so that the cutting edge does not exit the stock.
Additionally, the width of cut is adjusted so that the cutting
edge does not exit the workpiece at the corners.  For this
example, this simply means that the width of cut is less than
1/2 the diameter of the tool.  However, an algorithm has
been developed to appropriately adjust the width of cut for
more complex geometries.  This first tool path leaves a
small burr free step at the edges of the part.  Then, the
remaining material is removed from the face of the work-
piece using a zig zag tool path as illustrated in Figure 1 (c).

At first glance, the total machining time required by this
method appears to be more than that required using normal

techniques. However because this method avoids exit burr
formation an additional deburring step is unnecessary. Fur-
thermore, since the additional tool paths do not require a
setup change, there is an additional savings in the total time
required for manufacturing the component.

Cost Estimation

The standard models of cost estimation for machining (Ost-
wald 1992; Dixon and Poli 1995) require that each machin-
ing feature be extracted from the CAD geometry, followed
by estimates of the total length of the tool paths for each
operation, and the calculation of the time for machining
based on parameters such as feed rate and spindle speed.  If
no detailed process plan exists, this estimation process is
very cumbersome and time consuming.  However, if
detailed process plans including tool paths can quickly be

 

(a):
Beginning stock.

(b):
Edge Precision Tool
Path.  
part along an arc and
keeps width of cut
less than 1/2 the tool
diameter so that the
cutting edge never
exits the stock.

(c):
A final zig zag tool
path removes the 
remaining material.

Tool enters

Figure 1:  Illustration of Burr Minimization Tool Paths
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generated, the cost estimation process is much easier and
more accurate.  Both the core process planner and burr min-
imization tool path planner provide tool paths and machin-
ing time information that can be used to calculate the cost of
a part. The cost of a machined part can broadly be expressed
by four categories. These are, (1) cost of raw material, (2)
cost of tool wear for machining, (3) cost of setup/fixture,
and (4) cost of machining which is converted from the time
spent on machining (Dornfeld, et al 1999).

The cost of the part is given by Eq. (1).

In general machining practice, there exists another
component of cost, deburring cost, which consists of
removing edge defects generated by primary machining.
Whereas the costs of material, setup, tool, and machining
are estimated for the CNC milling process, the deburring
cost is based on the deburring process using deburring tools.
For simple parts in a job shop environment, the cost of
manual deburring is:

where:
CT: Cost of deburring tool including equipment

and tool replacement
NP: Number of parts deburred with the tool
CL: Labor costs for deburring
D0: Overhead costs for deburring
tdeburring: Time for deburring the part

The deburring cost can potentially be reduced to near zero
by using the burr minimization planner, which minimizes
initial burr formation.

At the same time, however, burr minimization planning
requires additional CNC milling tool paths which increases
the cost of the machining operation. The burr minimization
cost consists of the cost of tool wear and machining for the
additional tool paths.  

For complex parts, the burr minimization toolpaths may 
require another tool change.  A term to account for this tool 
change could be added to Equation 3.

The cost of deburring, Cdeburring, and cost of running burr 

minimization tool paths, Cburr-min, are compared to deter-
mine the cost of burr removal, Cburr-removal. The cost of burr 

removal is the minimum cost required to remove burrs 
either by deburring or by using the burr minimization tool 
paths.

Including the burr removal cost, the final cost becomes.

Overview of the Design Consultant Shell

In order for a distributed agent based system to function in
an autonomous fashion, there must be a central coordination
and communication framework in which the agents (or indi-
vidual software applications) operate.  This section deals
with the structure of this framework.  Agent-based DFM,
manufacturability, and process planning systems have
received much attention in the literature (Dabke et al 1998,
Frost and Cutkosky 1996, Rajagopalan et al 1998, Karne et
al 1998).  Most systems have a rigid or closed infrastructure
in that they can only incorporate agents which have been
programmed expressly for use inside that particular system
(Kashyap and Devries 1999).  Some have incorporated
sophisticated wrappers to incorporate legacy systems into
the overall framework (Jha et al 1998).  However, in general
most systems in the literature are not very flexible in allow-
ing for the addition of software tools that may not have been
written specifically to integrate into the system.  

It was our desire to create a central framework which would
easily allow for the introduction of a variety of different
kinds of software tools without requiring extensive re-cod-
ing of the framework or the individual software tools.  This
desire for a flexible framework led to the creation of the
DCS.  The discussion of the DCS will begin with an expla-
nation of the structure, or different parts and functions, of
the framework, followed by the syntax and language it uses,
and finally the types of software tools that can be integrated
into the framework.

Detailed Structure of the Design Consultant Shell

The DCS consists of two main parts.  The Agent Coordina-
tion Center and the Agent Interface.  The DCS uses JATLite
(Jeon, et al 2000) which implements a router and router cli-
ent architecture.  The router can initiate contact with the
router client or vice versa.  (This architecture is a little dif-
ferent than a server client architecture where the client can
initiate contact with the server, but the server does not ini-
tiate contact with the client.) Typically each agent has an
associated router client. All communications from agent to

Cpart Cmaterial Csetup Ctool C+
machining

+ +=       Eq. (1)

Cdeburring

CT

NP
------- CL 1 Do+( )tdeburring+=         Eq. (2)

Cburr min– Cburr min– tool– Cburr min– machining–+= Eq. (3)

Cburr removal– minimum Cdeburring C,
burr min–

{ }= Eq. (4)

Ctotal Cpart Cburr removal–+=              Eq. (5)
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agent pass through the router which queues and routes all
messages.  

The Agent Coordination Center is a Java application which
runs on the user’s computer and implements the JATLite
router.  The Agent Coordination Center is devoid of any
domain specific knowledge and is designed solely to admin-
ister the communication and data transfer between different
agents and the user. Each agent has an associated Agent
Interface, which is also a Java application.  The Agent Inter-
face runs on the computer hosting an individual software
tool (or agent) that performs some domain specific function.
See Figure 2. The Agent Interface receives requests and
data from the Agent Coordination Center (these may origi-
nate from the user or another agent), calls upon the domain
specific code to perform its function, and then returns
results to the requesting agent.  The Agent Interface may
also send requests and data to other agents via the router.

The system is user-centric in that the Agent Coordination
Center resides on the user’s computer and builds and main-
tains a network of agents for the user. Note that in the
future, the Agent Coordination Center should be converted
to a Java applet which will reside on a web server and func-
tion inside a web browser, but this is not the case currently.
Organizations that wish to make their domain specific soft-
ware tools available would continuously run an Agent Inter-
face application on their computer which would be open to
connections from multiple users, each running their own
Agent Coordination Center.  In this way, each user sets up
and connects to their own network of software tools.  The
Agent Coordination Center manages the details of this cus-
tom network. 

The long term vision is that many organizations would
make their DFM, analysis, manufacturability, or process
planning services available and the list of available services
would be kept on a centrally located database.  Each user’s
Agent Coordination Center would then query the database

to present the user with available services.  Since only a few
software tools are being coordinated at present, this cen-
trally located database is not implemented.

The Agent Coordination Center and Agent Interface appli-
cations send requests and confirmations using a text syntax
based on KQML (Finin et al 1994)  The standard format of
a KQML message in the context of the DCS looks like the
following:

(performative :sender sending_agent_name :receiver 
receiver_agent_name :files list_of_files :idNum id_number 
:content (content of message))

The “performative” argument tells what kind of message
this is (e.g. “reply”, “error”, etc.) and lets the “receiver”
(either an Agent Interface or Agent Coordination Center
application) know how to proceed. The “list_of_files” argu-
ment notifies the receiving agent of any data files that are
needed to perform the requested action.  The Agent Coordi-
nation Center will then connect to the computer hosting the
Agent Interface using the ftp protocol and send the files to
(or receive the files from) the Agent Interface application.
The remainder of the  arguments are self explanatory.

As previously stated, the desire was to develop a flexible
framework which could easily integrate a variety of differ-
ent types of software tools.  Therefore, a brief classification
of the types of software tools that can be integrated into the
framework will be given, followed by an explanation of
how one would proceed to add them.  Software applications
have been grouped into four different categories which
encompass most software that one could conceivably use as
a remote agent.  The categories are as follows:
Type 1 - Software designed or modified specifically to inte-
grate into the DCS framework (or some other agent frame-
work).
Type 2 - Software which can be run from a command line
without user interaction.
Type 3 - Interactive software with a clearly defined Applica-
tion Programming Interface (API).
Type 4 - Interactive software with no clearly defined API.

Software of Type 1 is obviously easily integrated into the
system.  Software of Type 2 would include many feature
recognition and process planning routines which typically
run from a command line without graphical user interaction
and take simple text or file inputs and similarly return text
and file outputs.  Software of this type is also easily inte-
grated into the DCS framework.  About 50 lines of Java
code need to be added to the Agent Interface Application
which allow it to run and access the output of software of
Type 2.  Detailed instructions on how to do this along with
some examples have been documented (Roundy 2000).

Figure 2: DCS Structure, showing connection between
Agent Coordination Center and Agent Interfaces.
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Software of Type 3 can be integrated, but takes more work.
An example of this type of software is the SDRC I-Deas
CAD system which is highly interactive, but has a clearly
defined CORBA based API.  Code specific to the applica-
tion’s API and the functions which need to be performed
must be added to the Agent Interface in order to integrate an
agent based on this type of software into the system.  A Type
3 agent has been implemented in the DCS, but requires a lit-
tle more programming. Finally, software of Type 4 cannot
be added to the system as there is no way to access the pro-
gram’s functions from another software application.  A
schematic showing agents incorporating software of Types
1, 2, and 3 integrated into the DCS is shown in Figure 2.

Case Study  

The two process planning agents described above were
added to the DCS and used to generate NC toolpaths for
various parts.  Each process planner along with its associ-
ated Agent Interface ran on a separate server.  The Agent
Coordination Center was run on the user’s computer.  It
should be noted that the system was tested with the Agent
Coordination Center running on a computer that was outside
the Local Area Network of the process planners.  Figure 3
shows the user interface for the Agent Coordination Center.
As can be seen in the figure, each agent has a list of tasks
that it can perform along with an explanation of the input
required and output returned by each task
.

One of the parts submitted to the process planners is the
base plate shown in Figure 4.

Both process planners take an ACIS file and return NC files
along with some text explaining the results and some cost
analysis data.  This particular part was designed in the
SolidWorks CAD system which can directly output an
ACIS file.  However, it could have been designed in any
CAD system that can output the STEP format, which the
DCS can translate into ACIS.

Figure 5 shows the cost analysis data returned by the stan-
dard process planner.  It should be noted that the cost model
used does not include any overhead or profit, and that the
footprint of this part is only 2 inches by 2 inches.  A labor
rate of $29 per hour was used to calculate the cost of
machining time.  The additional cost to deburr this part,
given by Eq. (1), is  $0.64.

The burr minimization process planner generates additional
tool paths that will alleviate the need for deburring opera-
tions.  Figure 6 shows these additional tool paths developed
according to the burr minimization procedure detailed in
Figure 1.  Based on the time to perform these additional
toolpaths, the additional cost of using burr minimization
tool paths is $0.56.  Therefore, it can be seen that it may be
advantageous to use the burr minimization tool paths as part
of the machining process. 

Figure 3: UI for the Agent Coordination Center showing
list of agents and actions which each agent can perform.

Figure 4: Fixture Part

Figure 5:  Cost Analysis Results
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.

Conclusions  

1. A central framework for the integration and coordina-
tion of distributed agents has been developed.  The
framework has been designed to be flexible enough to
easily allow the addition of a wide variety of remote
agents with little or no re-coding of the communication
infrastructure.  

2. This framework has been demonstrated by integrating
two process planners for 3-axis milling.  The first pro-
cess planner generates tool paths which attempt to min-
imize the machining time.  The second process planner
generates additional tool paths which will prevent the
formation of burrs.  The integrated system allows a user
to access the process planners remotely and generate
toolpaths for their part.  

3. Cost related data is returned from both process plan-
ners.  A cost estimation module evaluates this data and
provides cost estimates to the user so that he/she can
decide which tool paths are most appropriate for the
given part.
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