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Abstract
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In acoustic power transfer systems, a receiver is displaced from a transmitter by an axial depth, a
lateral offset (alignment), and a rotation angle (orientation). In systems where the receiver’s
position is not fixed, such as a receiver implanted in biological tissue, slight variations in depth,
orientation, or alignment can cause significant variations in the received voltage and power. To
address this concern, this paper presents a computationally efficient technique to model the
effects of depth, orientation, and alignment via ray tracing (DOART) on received voltage and
power in acoustic power transfer systems. DOART combines transducer circuit equivalent
models, a modified version of Huygens principle, and ray tracing to simulate pressure wave
propagation and reflection between a transmitter and a receiver in a homogeneous medium. A
reflected grid method is introduced to calculate propagation distances, reflection coefficients, and
initial vectors between a point on the transmitter and a point on the receiver for an arbitrary
number of reflections. DOART convergence and simulation time per data point is discussed as a
function of the number of reflections and elements chosen. Finally, experimental data is
compared to DOART simulation data in terms of magnitude and shape of the received voltage

signal.

Keywords: ultrasonic transducer, wireless power transfer, implantable devices, DOART,
acoustic power transfer, energy harvesting, implantable medical devices

(Some figures may appear in colour only in the online journal)

Introduction

Acoustic power transfer has gained increased interest in the
last few years in the research community because of its
application to implantable medical devices (IMD). A review
of acoustic power transfer for the IMD field can be found in a
recent review by Basaeri [1]. IMD devices are typically small,
on the order of a cm or less, and have either a diagnostic or
therapeutic function. Proposed acoustic power transfer sys-
tems used to wirelessly power IMDs are comprised of a
transmitter (TX) and a receiver (RX) (typically piezoelectric)
separated by tissue. The TX transduces electrical power to
acoustic power and emits this acoustic power through tissue

0964-1726/17/125020-+12$33.00

to power an RX implanted in the tissue. The RX transduces
the acoustic power to electrical power to either charge or
directly power the IMD that is attached to the RX.

Acoustic power transfer systems are commonly modeled
using a network equivalent model such as Mason’s model or
the KLM model [2-10]. Such models assume an axially aligned
TX and RX of the same diameter separated by a homogeneous
medium and do not account for beam spreading. While network
equivalent models are efficient and useful for quick and ver-
satile modeling of power in a 1D system, more advanced
models are needed to model effects such as beam spreading, TX
and RX of differing diameters, and RX alignment and orien-
tation. These more advanced models include finite difference
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Figure 1. Block diagram of main components of DOART system:
source, TX, medium, RX, and load.

and finite elements. These modeling techniques have also been
frequently used in literature [4, 6-9, 11-14] and are typically
accessed via commercial software in such programs as COM-
SOL and ANSYS. 2D axis-symmetric finite element models
can model beam spreading and TX and RX of differing dia-
meters. 3D finite element models are required to further model
alignment and orientation. As rule of thumb, the number of
elements needed to accurately model the propagation of
acoustic waves is 6 to 12 elements per smallest expected
wavelength [15, 16]. This element density can lead to a long
simulation time per data point (or point at which each simula-
tion parameter has a single value), especially for 3D elements
and transducers that operate at high frequencies, have large
diameters, or have a large separation distance (depth). When
performing parameter sweeps, such as analyzing RX voltage/
power as a function of RX placement, load, diameter, and
frequency, the compounded number of data points can be
computationally expensive to simulate. To reduce simulation
time while still being able to model beam spreading, RX and
TX of differing diameters, and RX alignment and orientation, a
technique that models the effect of Depth, Orientation, and
Alignment, via Ray Tracing (DOART) was developed and is
presented in this paper. DOART treats acoustic waves as rays in
the frequency domain and uses ray tracing to simulate reflec-
tions between 3D TX and RX geometries. It accounts for beam
spreading and absorption and can handle TX and RX of dif-
fering diameters in 3D space with 3 degrees of freedom.

The purpose of this paper is to introduce the DOART
modeling technique. This paper is organized as follows: (1)
DOART system is presented and associated subsystems are
explained. (2) Modified Huygens principle formulation for cal-
culating pressure from the TX face is presented. (3) Reflected
Grid Method to model pressure reflections is presented and
working mathematical equations are developed. (4) Convergence
and simulation time of DOART are discussed (5) Experimental
setup is described and simulation data from DOART is com-
pared to experimental data in terms of magnitude and shape.

DOART system

The DOART system is comprised of five sub-systems:
source, TX, medium, RX, and load as shown in figure 1. The
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Figure 2. Definition of TX and RX diameters, depth, angle
(orientation), offset (alignment).

source is a sinusoidal electrical AC voltage source with an
internal series-connected source impedance (typically
50 ohms) that powers the TX in continuous-wave mode. The
TX and RX are acoustic transducers. The medium is a
homogenous material. Note that only compression waves are
considered in this work. So, mediums in which shear waves
dissipate quickly, such as water, air, and tissue, are assumed.
The load is an electrical impedance connected to the terminals
of the RX transducer.

The position of the RX relative to the TX can be defined by
3 parameters: depth, angle (orientation), and offset (alignment) as
shown in figure 2. Depth, z, is defined as the separation distance
between the TX and RX along the propagation axis (z-axis).
Angle, 0, is the x-axis rotation of the RX relative to the TX.
Offset y, is the y-axis displacement from the propagation axis.
Drx and Dy are the diameters of the TX and RX respectively. It
should be noted that this paper assumes transducers that have a
circular cross-section and a flat face. The DOART modeling
technique can be extended to any cross-sectional transducer
shape by adding y-axis rotation and x-axis displacement degrees
of freedom. DOART can also be extended to transducer faces
with curvature by either developing an application specific ver-
sion of the Reflected Grid Method (discussed later in this paper)
or employing a more generalized ray tracing algorithm.

In DOART, the TX and RX transducers can be modeled
by any equivalent circuit that (1) models an acoustic trans-
ducer, (2) has an electrical port and a mechanical or fluidic
port, and (3) employs impedances with values that are inde-
pendent of the impedances of other subsystems. For example,
even though the Mason model and KLM model are equivalent
to each other [17], the Mason model for a bulk-mode piezo-
electric transducer (i.e. plate) could be used in the DOART
system, but the KLM model could not because its front and
back impedances are dependent on the impedances of the
mediums and/or transducers attached to them. In this paper,
an LC circuit model (shown in figure 3) that utilizes complex
losses is employed as the TX and RX in order to compare
experimental data to the DOART model.

The circuit parameters of the LC model are determined
by first calculating the series resonance frequency, f; in (1),
based on the thickness, t,., and speed of sound, c,,, of the
piezo element. The parallel resonance frequency, f, in (2),
can then be calculated based on the series frequency where k33
is the 3-3 mode electromechanical coupling factor of the
piezo element. The series inductance, Ly, is given in (3) where
Ppe 18 the density and A, is area of the circular face of the
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Figure 3. LC model for bulk-mode piezoelectric plate with circular
cross-section. The model has one electrical port and two mechanical
ports representing the terminals, and front and back of the piezo
element respectively. An example matching layer is attached to the
front mechanical port of the piezo.

piezo element. The series capacitance is calculated using the
series inductance and series frequency in (4) where Qs 1S
the quality factor of the piezo element that may include
effects such as resistance posed by the material’s internal
structure and viscous drag as the element vibrates in the
medium. The parallel capacitance, C,, is representative of the
piezo element’s electrical capacitance and is given in (5)
where e;e is the permittivity at zero stress and tan ¢ is the
dielectric loss factor of the piezo element. Finally, the turns
ratio, N, of the transformer, which allows the model an
electrical and mechanical port, can be calculated from the
other circuit parameters and is given in (6). Matching and
backing layers can be added to the bulk-mode transducer
model by placing a T-branch filter in series with either of the
mechanical ports as shown in figure 3. The impedances Z; and
Z, can be calculated from (7) and (8) respectively where p,,,,
Cmi> Ami» and t,,; are the density, speed of sound, circular face
area, and thickness of the matching/backing layer respec-
tively and f is the operating frequency.
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Figure 4. Network equivalent model of a piezoelectric flexure-mode
transducer.
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Flexure mode transducers (i.e. diaphragms or PMUTS) are
also supported in DOART by employing the network equiva-
lent model developed in [18] and extended in [2] as shown in
figure 4. The circuit parameters can be calculated for a partially
covered diaphragm with a single piezo layer and a single elastic
layer by referring to [18]. For an expanded version that accounts
for an arbitrary number of elastic layers, refer to the working
equations given in [19]. Note that in [19] there is a typo in
equations 5, 8a-8c, 9, 10, 44, and 45 where the denominator
should be (1 — »?) instead of (I — v)2. The notation in
figure 4 is consistent with the notation in [18].

To calculate the average pressure radiating from the face
of a TX bulk-mode transducer into the medium, a mechan-
ical impedance can be attached to the front mechanical port
of the transducer. The medium impedance from the Helm-
holtz integral, as described in [20, 21], is given in (9) where
D is the diameter of the transducer of interest, H; is the first
order Struve function, Jj is the first order Bessel function,
and k, p and c are the wave number, density, and speed of
sound of the medium. The average pressure radiating from
the TX face into the medium is then simply calculated as the
force across the medium impedance divided by the trans-
ducer face area.

®
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The steps involved in calculating the power transferred
to the load using the DOART modeling technique are illu-
strated in figure 5 and outlined in the following steps:

(1) Assemble the TX. The TX is assembled by attaching
an electrical source to the electrical port, matching
and backing layers to the mechanical/fluidic port(s)
(optional), and an infinite medium to the mechanical/
fluidic port(s). In the case of the piezoelectric plate
transducer, the back mechanical port is terminated
with a short to approximate the back medium as being
either air or a vacuum.
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Figure 5. Diagram of the steps involved in calculating the power transferred to the load using the DOART modeling technique.

(2) Assemble the RX. The RX is assembled by attaching an
electrical load to the electrical port, matching and
backing layers to the mechanical/fluidic port(s)
(optional), and a mechanical /fluidic source to the front
mechanical /fluidic port. The source represents the
average pressure on the RX face as calculated in steps
6 to 8.

(3) Calculate pressure on TX face. Pressure on the TX face,
before propagation, is found using the assembled TX
circuit model in an infinite medium. In the case of the
plate TX, the force across the infinite medium circuit
element, Zy.qim, 1 calculated in response to the source
excitation. This force is divided by the TX area to
obtain the average pressure on the TX face.

(4) Discretize TX and RX faces. The TX and RX faces are
discretized into 2D elements. This paper uses Delaunay
triangulation to create triangular elements.

(5) Propagate pressure from TX to RX. The pressure
emitted from each element on the TX face is propagated
to each element on the RX face using a modified
version of Huygens principle as discussed in the
Modified Huygens Principle section of this paper.

(6) Propagate pressure for 1 reflection (TX to RX to TX to
RX). The Reflected Grid Method is used to determine
the direction that each pressure ray emitted from each
TX element should be propagated in order to reach the
center of each RX element after 1 reflection. Each
pressure ray is propagated using the modified version of

Huygens principle and reflected using principles of ray
tracing as discussed in the Reflected Grid Method
section of this paper.

(7) Repeat step 6 for 2, 3, 4, ... etc reflections.

(8) Feed propagated pressure into RX model. The pressure
contribution from each reflection is summed for each
RX element. The summed pressure for each RX
element on the RX face is then averaged and fed into
the RX circuit as a pressure source. In the case of the
plate transducer, the pressure is multiplied by the RX
area to give a force before being fed into the RX circuit.

(9) Calculate power delivered to the load.

Modified Huygens principle

To calculate the pressure transmitted from the TX face to the
RX face, an expanded version of Huygens principle is used.
Huygens principle can be summarized as follows: (1) The TX
and RX faces are discretized into smaller elements. Each of
these elements is treated as a half-spherically radiating pres-
sure source. In DOART, the elements are triangular and can
be obtained by applying Delaunay triangulation to uniformly
spaced points around uniformly spaced concentric circles as
shown in figure 6. This discretization method is used to
minimize element area variation while maintaining the ability
to properly represent the circular shape of the transducer face
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Figure 6. Discretization method of TX and RX faces using Delaunay
triangulation for 2, 5, and 10 concentric circles with even spacing.

Figure 7. A single triangular element is treated as a circular piston
with the same area when calculating pressure radiating from the
TX face.

when using larger elements. For example, 10 concentric cir-
cles result in 629 elements with a standard deviation of 2.59%
variation in element area. (2) The pressure from a single TX
element to a single RX element is calculated in the frequency
domain. Each triangular element is approximated as a circular
piston of equal area, A., and radius, a, (see figure 7), when
calculating the element-to-element pressure. The differential
pressure calculation, given in (10), takes into account mag-
nitude, phase, divergence, absorption, and directionality
where f is the frequency of the pressure source, d is the
distance between the TX and RX element, P, 7x and F, gx o are
the pressure at the TX and RX elements respectively, k is
the wave number, « is the absorption coefficient, n is the
absorption exponent, fi,, is the frequency in MHz, and ¢ is
the angle of the pressure ray relative to the propagation axis.
It should be noted that the directionality component can be
neglected for improved computational efficiency without
incurring significant error. This error is most noticeable for
significant offset values, high frequencies, large TX elements,
and shallow depth values. (3) The pressure contribution from
each element on the TX to a single element on the RX is
summed. The resulting complex pressure is the contribution
of the entire TX on that single RX element if there are no
pressure reflections between the TX and RX. (4) The complex
pressure contribution of the TX on each RX element is cal-
culated. (5) The effective pressure on the RX face, for zero
reflections, is calculated as the average complex pressure of
all the RX elements. It should be noted that results reported in
the Experimental Setup & Validation section of this paper are
load voltages reported as the magnitude of the complex result.
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Figure 8. Diagram of ray tracing concept, variables, relative TX and
RX geometry and Cartesian coordinate system orientation.

Reflected Grid method

Using the modified version of Huygens principle to calculate
the pressure propagating from the TX to the RX for zero
reflections is only the first step to properly modeling the entire
DOART system. The next step is to account for the pressure
reflections back and forth between the TX and RX. To
accomplish this computation efficiently while still being able
to use Huygens principle, ray tracing can be employed with
the following assumptions: (1) The TX and RX transducer
faces are flat (i.e. all points of the transducer face lie in a
plane). (2) The RX can only move in 3 degrees of freedom
with respect to the TX. These degrees of freedom are defined
as depth, offset (alignment), and angle (orientation) in
figure 2. (3) The medium between the TX and RX is a single
homogeneous material. It should be noted that tissue is not a
homogeneous material, but the attenuation of acoustic power
traveling through tissue can be approximated by treating tis-
sue as a homogeneous material with an appropriate absorption
coefficient. This approximation is commonly used for general
modeling of acoustic power transfer systems where specific
tissue inhomogeneities are not specified. (4) The TX is fixed
in the coordinate system and the center point of its face is the
origin. This means that only the RX experiences a shift in
depth, offset, and angle within the defined coordinate system.

To ensure that the pressure contribution of a specific single
TX element on a specific single RX element can be calculated
for any number of reflections, analytical relationships in the form
of series solutions for any number of reflections are derived for
intersection points on the RX and TX faces, (x,, ), z,), dis-
tances between intersection points, d,, and the direction of
reflected pressure rays, r,, which is written as (x,n, Vo z,”> in
vector form. For clarification, zero reflections is defined as a
pressure ray traveling from the TX to the RX (i.e. TX — RX).
One reflection is defined as TX — RX — TX — RX, two
reflections is then TX — RX — TX — RX — TX — RX, etc.
A diagram of the ray tracing problem in Cartesian coordinates is
given in figure 8 where nyy and ngy are the normal vectors to the
TX and RX faces respectively.

Utilizing principles of ray tracing, treating the TX and
RX faces as infinite planes, and defining the constants (11)
(12)(13)(14), a compact series solution for the remaining
variables in the ray tracing diagram for an arbitrary number of
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reflections can be derived. (15)(16)(17)(18) give the X, y, and
z coordinates of the points where the pressure ray intersects
the TX and RX planes. Even subscripts represent points on
the TX and odd subscripts represent points on the RX. Note
that these points are where the pressure ray intersects the
plane of the transducer face, not necessarily the transducer. In
implementation, each ray must be checked to determine if it
has strayed or hit the transducer face. (19)(20) give the dis-
tances between subsequent intersection points. For example,
d is the distance between point O and 1, and d is the distance
between point 1 and 2. (21)(22) give the directions of the
reflected vector at each intersection point. Note that ry is equal
to the initial vector i.

of = —y sin(fx) — z cos (by) (1)
& = (1 — 2sin?(0y)) (12)
% = (1 — 2cos?(6y)) (13)
I = sin(26y) (14)
n—1
X, = X0 + xi( > dk] (15)
k=0123...

n—1
Yo = Yo+ 2 diy, (16)

k=0
2,=0 - n=0,2,4,6,...even (17)
2 =dp_1z,, , = n=1,3,57,...0dd (18)

d - o/ — sin(0x)y,
" sin(0x)y, — cos(0x)z,
—n=20,2,4,6,...even (19)
dy= - — n=1,3,5,7,...0dd (20)
Zr’l
=y, L+, T 2,6+, T )

—n=1,3,57,...0dd 2D
=Y, »—Z,,) — n=2,468...even (22)

The initial vector I is not solved for in the equations
mentioned above. i represents the direction that the pressure
ray must be projected from a specified point on the TX in
order to reach a specified point on the RX after n, reflections.
Solving for i for a known starting point on the TX and ending
point on the RX is essential to calculating the correct dis-
tances, reflection directions, and reflection coefficients. For
the case that fy = 0, a solution to i, (23), can be obtained by
inspection where n, is the number of reflections (note that
n = 2n, + 1). However, to derive an analytical solution for i
when 0y = 0 is not trivial. To overcome this obstacle, the
secant method for root finding can be used to find the roots to
the spatial error between the center of the targeted RX element
and where the trajectory of a guessed initial vector actually hits.
In this implementation, the error in the X and Y components of
the initial vector are separately and simultaneously minimized.
This method, in practice using MATLAB, converges in less
than 10 iterations and can be efficiently applied to a matrix of
initial vectors that represent pressure contributions from every
element on the TX to every element on the RX.

Yon,+1 = Yo
2n, + 1

(23)

i‘

F, rx.n, =

X2n,4+1 — X0
2n, + 1

» L2np+1 — Zo)
2

Ae-’l(kae sin ((ZS))
W(Zi”;o dm)ae sin (¢))

m=0 2y
,[Z d,,,]aofﬁr,‘,H7+[fk[Z d,,,]+g]j
X e \ N m=0
X (H’z-:]RmelRZm)

F. rx

(24)

After solving for the initial vector, the complex pressure
contribution from a single TX element on a single RX element
for an arbitrary number of reflections (greater than zero) can be
calculated by modifying (10) to include reflection coefficients at
the TX and RX faces. This expanded version is given in (24)
where R, is the reflection coefficient at point n (odd n is at the
RX face and even n is at the TX face) as defined in the diagram
in figure 8. The reflection coefficient is given in (25) and (26)
where Zg,,ce7x 18 the acoustic impedance of the source and
TX (the TX includes the piezo element with any matching and
backing layers attached) as seen by the medium, Z; .4 rx is the
acoustic impedance of the load and RX as seen by the medium,
0, is the transmitted angle of the pressure ray into the trans-
ducer, 6;, is the incident angle of the pressure ray onto the
transducer face, and p and c are the density and speed of sound
of the medium respectively. The cosine of the incident angle is
given in (27) and (28) for the cases that the pressure ray
intersects the RX and TX planes respectively. The cosine of the
transmitted angle is given in (29) and (30) for the cases where
the pressure ray intersects the RX and TX planes respectively
where cgx and ¢y are the speed of sound of the material of the
RX and TX that is in contact with the medium respectively. It
should be noted that the reflection coefficients are affected by
any electrical impedances and matching layers attached to the
TX and RX transducers.

ZLoad+RX _ pC
R, = 80w cosli) 4557 odd
2 oad+RX pc
cos (6;.,) cos (6;.,)
(25)
ZSourceJrTX _ pc
R, = ©05 (01.n) ©05 (01n) —n=2,4,6,...even (26)
ZSou rce+TX PC
cos (60;.) cos (60;,)
cos(0iy) = —F - gy — n=1,3,57,...odd  (27)
cos(0;,) = —F-firx — n=2,4,6,8,...even  (28)
cos (0;.,) = \/1 — (Cﬂ)cos2 0;.)
c
—n=1,3,5,7,..0dd 29)
cos (0,,) = \/1 — (Cﬂ)cos2 i)
c
—n=2,4,6,8,...even 30)
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Figure 9. Relative error of average RX pressure calculation for a 10 mm diameter TX as a function of number of reflections for various
frequencies (blue = 150 kHz, red = 1500 kHz). Each plot represents a different depth (z) and RX diameter (drx). The data was simulated
using 5 concentric discretizing circles (157 elements) for both the TX and RX.

The pressure on a single element on the RX face is then
calculated as the summation of the pressure contributions from
all TX elements summed over an infinite number of reflections
as given in (31). Once the pressure for all RX elements is
calculated, the pressure on the RX face, as seen by the load, is
calculated as the average pressure of all RX elements as given
in (32) where Ny is the number of elements on the RX face. In
practice, calculating an infinite number of reflections is not
possible because the computation time for each subsequent
reflection gets exponentially longer. However, a good approx-
imation can be achieved for a relatively cheap computation time
(compared to finite element methods) by wisely choosing the
number of elements and reflections to use. The average pressure
over all RX elements, PRX, is used as the input pressure source
for the RX circuit. The resulting power delivered to the load can
then be calculated.

o0
Prx = Y Prxa,

(31)
n,=0
1 Mk
Prx = —> P, rx (32)
RX k=0

Convergence and timing

The relative error in the RX pressure calculation between each
subsequent reflection, as defined in (33), converges to zero as
the number of reflections used goes to infinity. The rate of
convergence is dependent on operating frequency, diameter,
depth, and the material properties of the medium. As an
example, the relative error as a function of reflections for a
10 mm-diameter TX operating in water at 150kHz to
1500 kHz in increments of 150 kHz as RX diameter and depth
are varied is shown in figure 9. In the data presented, more

reflections are required to achieve smaller relative errors for
higher frequencies, larger RX diameters, and shallower
depths. The cases shown are for an RX with offset, y, and
angle, 0y, equal to zero. In cases where the RX has an offset
or angle not equal to zero, significantly fewer pressure rays
are able to reflect between the TX and RX. For large values of
offset or angle, reflections between TX and RX are not pos-
sible. Consequently, the relative error converges much faster
for misaligned and/or misoriented transducers meaning that
significantly fewer reflections are required for effective
convergence.

1 Nex

- B rxm+1) _ Prx.,+1) — PR,
- o =
NRX =1 Zk:@ F,.rx.k

To further illustrate the effect of subsequent reflections
on relative error, pressure as a function of depth for a 10-mm-
diameter TX and RX operating at 750 kHz for various number
of reflections is given in figure 10. The figure shows that each
additional reflection more faithfully reproduces the pressure
profile. It should be noted that high Q TX transducers and
low-loss mediums require a higher number of reflections to
resolve the sharp pressure peaks on the RX face than low Q
TX transducers and lossy mediums that produce flatter pres-
sure profiles on the RX face.

In addition to considering the relative error in terms of
reflections, the number of elements chosen to discretize the
TX and RX faces must be considered. The number of ele-
ments on a circular transducer face is a function of the number
of discretizing circles chosen as explained in the Modified
Huygens Principle section of this paper and given in table 1.
The relative error as a function of discretizing circles for a
10 mm-diameter TX operating in water at 150kHz to
1500 kHz in increments of 150 kHz as RX diameter and depth
are varied is given in figure 11. It is notable that the relative

er

(33)
Prx n,
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Figure 10. RX face pressure as a function of depth for various
reflections. TX and RX are simulated using 5 discretizing circles
(157 elements) each. Each additional reflection better resolves the
sharp pressure peaks.

Table 1. Number of elements as a function of number of circles.

Circles Elements | Circles Elements | Circles Elements
0 1 7 308 14 1232
1 6 8 402 15 1414
2 25 9 509 16 1609
3 57 10 629 17 1817
4 101 11 761 18 2037
5 157 12 905 19 2269
6 226 13 1062 20 2514

error behaves differently as a function of elements compared
to reflections. In the reflections case, more reflections were
required to reduce the relative error for larger RX diameters.
In the elements case, the relative error converges faster when
the TX and RX have the same diameter. This occurs because
the effective number of elements is fewer in the region of
highest reflection activity when the TX and RX have different
diameters as shown in figure 12. In the case of the figure, the
number of element used for the TX (case on the right side)
would need to be increased to reduce the relative error. Best
practice is to match the radial spacing of the TX and RX
elements as closely as possible and ensure that both radial
spacings are less than or equal to half of the wavelength in the
medium.

The simulation time is a function of the number of
reflections and elements used. A sample of simulation times
per data point as a function of number of reflections and
circles is given in figure 13. Simulation times were measured
using an Asus K501UX that has an i7-6500U (2.5 GHz)
processor and 12GB RAM. The simulation times can be
further reduced by implementing a ray straying programmatic
condition. The condition ceases further simulation of sub-
sequent reflections when all pressure rays have strayed. This

condition results in significant time savings when simulating
cases where angle and offset are not equal to zero.

To compare DOART and finite element simulation time,
the known time for an axis-symmetric finite element simu-
lation was compared to a DOART simulation crafted to match
the finite element simulation scenario as closely as possible.
The DOART simulations were run using the Asus K501UX
specified above, while the finite element simulations were run
on a virtual machine with a dual-core AMD Opteron 8220
(2.79 GHz) processor with 32 GB RAM. In both cases, a
50 mm TX and 12.7 mm RX in water at 50 mm depth, 0 mm
offset, and 0° angle were used. The COMSOL finite element
simulation used 378 elements for the TX, 112 elements for
the RX, and 119352 elements for the medium. The DOART
simulation used 2514 elements (20 circles) for the TX and
157 elements (5 circles) for the RX. Both cases use 2
wavelengths in the radial direction and 10 wavelengths in the
propagation direction. The finite element simulation took 73 s
per data point (a data point is where all parameters have a
single value) while the DOART simulation took 11s at 10
reflections (2.85% relative error), 40s at 20 reflections
(0.49% relative error), and 868s at 100 reflections
(0.000037% relative error). In cases where offset and angle
are zero, an axis-symmetric finite element simulation can be
used and the time per data point will be on the same order as
DOART. As frequency increases, both the finite element and
DOART simulation times increase because the wavelength
gets smaller. As depth increases, the finite element simulation
time increases because more elements are required to model
the extra length of medium, but DOART simulation time
decreases because pressure rays stray quicker and thus fewer
reflections are required. When working with finite element
simulations for cases where offset and angle are not equal to
zero, 3D elements are required and, consequently, the simu-
lation time dramatically increases. A COMSOL simulation of
the same system using 3D elements (337380 elements for the
TX, 26192 elements for the RX, and 5760776 elements for
the medium) took 2777 s to simulate per data point, more than
an order of magnitude greater than DOART. DOART time
savings become significant in this case because DOART
simulation time decreases for cases where offset and angle are
not equal to zero. This is due to the ray straying programmatic
condition discussed previously. For cases where angle is not
equal to zero and reflections do not stray quickly (shallow
angles), the simulation time can increase as a function of the
number of reflections used. This is due to the extra compu-
tation involved in using the secant method to find the initial
vector for the Reflected Grid Method as described previously.

Experimental setup and validation

To test the abilities and limitations of the DOART modeling
technique, simulation data is compared to experimental data.
Piezoelectric transducers, in a water-filled acoustic test tank
equipped with a positioning apparatus, were used to obtain the
experimental data. The test tank is a 59 x 28 x 28 cm acrylic
tank lined with ultra-soft polyurethane acoustic absorbers
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Figure 11. Relative error of average RX pressure calculation for a 10 mm diameter TX as a function of TX and RX discretizing circles for
various frequencies (blue = 150 kHz, red = 1500 kHz). Each plot represents a different depth (z) and RX diameter (drx). The data was

simulated using 100 reflections.

— Fewer effective
elements than RX

Figure 12. Definition of region of highest reflection activity (gray
shaded area). The TX and RX in both cases have the same number of
elements, but the TX on the right has fewer effective elements in the
region of highest reflection activity. Mismatched element spacing in
the radial direction can increase error.

(McMaster Carr, 8514K75). The absorbers are 12.7 mm thick
and experimentally exhibit an average of 90.6% pressure
attenuation after one pass on a pulse-echo test between the fre-
quencies of SkHz and 1.25 MHz [2]. The transducers used in
the experiment will be referred to by their serial numbers: PL3,
PA2, PB4, and PB6. Material properties for the transducers are
given in table 2. PL3 is a bulk-mode piezo element that is press
fit into a PVC housing and sealed against water on the back side.
The piezo element is 50 mm in diameter, 3 mm thick, and has
wrap-around electrodes. PA2 is a bulk-mode piezo element that
is set atop an ABS tube with cyanoacrylate and sealed against
water on the back side. The piezo element is 12.7 mm in dia-
meter, 3.43 mm thick, and has a standard separate electrode on
each face. PB4 and PB6 are bulk-mode piezo elements that are
press fit into an ABS housing and sealed against water on the
back side. The piezo element is 12.7 mm in diameter, 1.9 mm
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Figure 13. Simulation time per data point as a function of number of
discretizing circles on the TX and RX for various number of
reflections. Simulation time represents maximum expected simula-
tion time where angle and offset are zero.

Table 2. Piezoelectric element properties of experimental
transducers.

Var  Units PL3 PA2 PB4/6
Diameter dpe mm 50 127 12.7
Piezo Thickness 1, mm 3.00 343 1.90
Density pe  kgm™ 7900 7600 7600
Speed of Sound ¢, ms~! 3955 4310 4025
Coupling Coeff. ki3 — 0.65 045 0.46
Rel. Permittivity €, — 1400 1900 1950
Mechanical Q Onm — 1800 80 80
Dielectric Loss tand % 0.4 2 1.5
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Figure 14. Test setup showing PB4 (TX) and PB6 (RX) in an acoustic test tank filled with distilled water and lined with acoustic absorbers.

Depth, angle, and offset measurement are demonstrated.

thick, and has wrap-around electrodes. The TX transducer is
powered by a Rigol DG1022A function generator connected to a
Rigol PA1011 power amplifier. The RX has a resistive load
connected across its terminals. RMS voltage measurements
across the RX load were recorded using a PicoScope 2206.

In this paper, residuals are used to quantitatively compare
the variation between experiment and simulation data in terms
of magnitude and shape. The magnitude variation is defined
as the average of experimental minus simulated RX load
voltage divided by the maximum simulated RX load voltage.
The shape variation is defined as the average of the magnitude
of the difference between the normalized experimental and
normalized simulated RX load voltages and is expressed as a
percentage. The idea behind the shape variation is to match
the simulated and experimental magnitudes as much as pos-
sible and then find the variation between them.

PB4 and PB6 were placed in the acoustic test tank as
shown in figure 14. RX load voltage was recorded as a function
of depth, angle, and offset for a resistive RX load of 986 (2, a
voltage source impedance of 2 €2, and source voltage of 16 V at
1058824 Hz. Depth measurements were taken from 12.5 to
16 mm in increments of 0.1 mm at 0° angle and 0 mm offset
and are given in figure 15. The depth magnitude variation is
2.1% and the shape variation is 4.5%. Angle measurements
were taken from —45° to 45° in increments of 1° at 51 mm
depth and O mm offset and are given in figure 16. The angle
magnitude variation is 3.4% and the shape variation is 3.8%.
Offset measurements were taken from —30 mm to 30 mm in
increments of 1 mm at 51 mm depth and 0° angle and are given
in figure 17. The offset magnitude variation is 0.2% and the
shape variation is 3.1%. Simulation data were obtained using 5
circles for both PB4 and PB6 with 4 reflections. The simulation
time was 0.0974 s per depth data point, 0.149 s per angle data
point, and 0.0496 s per offset data point.

PL3 and PA2 were then placed in the acoustic test tank
and RX load voltage was recorded as a function of offset
separately at a peak and at a valley near 50 mm depth at 0°
angle. The RX had a resistive load of 100 {2 with a source
impedance of 2 {2 and source voltage of 6.79 V at 642 kHz.
Offset measurements were taken from —50 mm to 50 mm in
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Figure 15. RX load voltage as a function of depth at 1058824 Hz at
0° angle and 0 mm offset for PB4 (TX) and PB6 (RX).
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Figure 16. RX load voltage as a function of angle at 1058824 Hz at
51 mm depth and 0 mm offset for PB4 (TX) and PB6 (RX).
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Figure 17. RX load voltage as a function of offset at 1058824 Hz at
51 mm depth and 0° angle for PB4 (TX) and PB6 (RX).

1200 T
1000 [ b
Exp @ Max
800 Sim @ Max )
X Exp @ Min
— — —-Sim @ Min

600

400

RX Load Voltage [mV]

200

-10 0 10
Offset [mm]

-20

Figure 18. RX load voltage as a function of offset at 624 kHz for
PL3 (TX) and PA2 (RX). Offset profiles are taken at a peak and
valley around 50 mm depth at 0° angle.

increments of 0.5 mm and are given in figure 18. The offset
magnitude variation is 1.5% for the peak and 23% for the
valley. The shape variation is 6.6% for the peak and 16.5%
for the valley. Simulation data were obtained using 15 circles
for PL3 (TX), 6 circles for PA2 (RX), and 8 reflections.
Simulation time per data point was 3.86 s. All simulation data
assumes a depth and frequency tolerance of less than 0.35%.

Variance could be attributed to the precision and manual
operation of the positioning apparatus, wrap around electro-
des that cause dead spots in the piezo elements, and the one-
dimensional circuit model used to model the transducers.
There is no doubt that finite-element simulations have greater
capabilities in handling more of the details such as non-
homogeneous media, dead spots in transducers, all modes of
the transducers, etc. However, considering the quick simula-
tion times and achievable variance demonstrated in this paper,
DOART can be an extremely useful tool for exploring

11

parameter sweeps and quickly designing acoustic power
transfer systems in a better-than-first-order fashion.

Conclusion

This paper presented the DOART modeling technique. The
DOART system consists of 5 subsystems: source, TX, medium,
RX, and load. A modified version of Huygens principle and the
Reflected Grid Method were presented as a means of modeling
beam spreading and TX and RX transducers of differing dia-
meters in 3D space with 3 degrees of freedom. Experimental
work was presented and compared with DOART simulations in
terms of magnitude and shape of the received voltage signal.
The quicker-than-finite-element simulation times, 3D modeling
capabilities, and variances that can be considered reasonable for
a number of applications make DOART a useful tool for
acoustic power transfer system design and parameters sweeps.
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