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Abstract: A tremendous amount of research has been
performed on the design and analysis of vibration energy
harvester architectures with the goal of optimizing power
output. Often, little attention is given to the actual char-
acteristics of common vibrations from which energy is
harvested. In order to shed light on the characteristics of
common ambient vibration, data representing 333 vibra-
tion signals were downloaded from the NiPS Laboratory
“Real Vibration” database, processed, and categorized
according to the source of the signal (e. g. vehicle,
machine, etc.), the number of dominant frequencies, the
nature of the dominant frequencies (e. g. stationary, band-
limited noise, etc.), and other metrics. By categorizing
signals in this way, the set of idealized vibration inputs
(i. e. single stationary frequency, Gaussian white noise,
etc.) commonly assumed for harvester input can be corro-
borated and refined. Furthermore, some heretofore over-
looked vibration input types are given motivation for
investigation. The classification determined that, of the
set of signals used in the study, 64% of the animal source
signals are best described with nonstationary dominant
frequencies, 58% of machine source signals are best
described with stationary frequencies, and vehicle source
signals are poorly described by any one signal type used
in the classification. Nonlinear harvesters with a cubic
stiffness term have received extensive attention in the
scholarly literature; a numerical simulation and optimiza-
tion procedure were performed using several representa-
tive signals as vibration inputs to determine the
prevalence with which such a nonlinear harvester archi-
tecture might provide improvement to power output. The
analysis indicated that a nonlinear harvester architecture
may prove beneficial in increasing power output over a
linear counterpart if the signal contains a single, domi-

nant frequency that is not stationary in time, as evidenced
by a 14% increase in harvester power output when
employing an architecture with a nonlinear cubic stiffness
function. Other studies have indicated that nonlinear
architectures may be beneficial for signals with nonsta-
tionary frequencies or filtered noise. 53% of the all char-
acterized signals fall into categories that could potentially
benefit from a nonlinear oscillator architecture.

Keywords: energy harvesting, nonlinear harvesters,
optimal architectures, vibration classification, vibration
database

Introduction

In order to extract sufficient power for a given applica-
tion, vibration energy harvesters (VEHs) are typically
high Q (10-100) resonant oscillators. Thus, their operating
bandwidth can be quite narrow. This has motivated an
extraordinary amount of research work on methods to
increase the operating bandwidth of VEHs (Daqaq et al.
2014; Neiss et al. 2014; Roundy et al. 2005; Wu et al. 2013;
Zine-El-Abidine and Yang 2009). Such methods include
multi-mode dynamic structures, active frequency tuning
by both mechanical and electrical means, and nonlinear
dynamic structures. Of course, if the vibration source is
dominated by a single stationary frequency, a linear
oscillator-based energy harvester is the optimal energy
harvesting structure (Halvorsen et al. 2013; Heit and
Roundy 2015; Mitcheson et al. 2008; Williams, Woods,
and Yates 1996).

In the search for methods to improve the operating
bandwidth of VEHs, careful examination and quantifica-
tion of the types of vibrations that appear frequently in
environments conducive to energy harvesting often
become a secondary priority; to our knowledge, there
has not been a systematic study of the prevalence of
vibration sources geared towards determining which
VEH structure would be most appropriate for a given
source.

The current study seeks to provide additional
insight into the prevalence and characteristics of

*Corresponding author: Robert Rantz, Department of Mechanical
Engineering, University of Utah, 1495 E 100 S, Salt Lake City, UT
84112, USA, E-mail: robert.rantz@utah.edu
Shad Roundy, Department of Mechanical Engineering, University of
Utah, 1495 E 100 S, Salt Lake City, UT 84112, USA

Energy Harvesting and Systems 2017; 4(2): 67–76



vibrations commonly encountered in the environment.
A broad range of vibrations from the existing NiPS
Laboratory “Real Vibration” database is classified
using metrics that capture vibration properties that are
relevant to VEH design. A comparative analysis of two
types of energy harvesting architectures – linear, and
nonlinear with a cubic stiffness function – is performed
on several representative signals in order to quantify
the degree to which a nonlinear architecture could
improve power output over a linear architecture, if
at all.

Methodology for Classifying Vibrations

The NiPS Laboratory “Real Vibration” database is a
library of downloadable vibration signals collected from
several types of acquisition kits (Neri et al. 2012). Each
signal in the database consists of 3 axes of vibrational
data; linear acceleration of X, Y and Z, measured in units
of g. Each of the 3 axes is treated as an independent
signal for processing purposes. DC bias was removed
from each signal axis by subtracting the mean value
from the data.

A classification system has been developed for the
study that has been previously published (Rantz and
Roundy 2016) and is only briefly summarized here.

Signal Sources

The “source” classification of a signal is a broad cate-
gorization of what kind of system produced the vibra-
tion, as determined by the signal metadata. Source
classifications include Animal, Machine, Vehicle,
Structure, or in the case that the source of the vibration
cannot be surmised with confidence, Unknown.

Spectrogram Parameters

The entire NiPS database of vibration signals was down-
loaded and processed into spectrograms for each of the 3
axes, using several sets of processing parameters, gener-
ating several spectrograms per vibration signal.

In order to make dominant signals more apparent, a
filtering technique was employed based in linear VEH
theory. According to the Velocity Damped Resonant
Generator (VDRG) model (Mitcheson et al. 2004), the
upper bound on average power output of a linear VEH
subject to harmonic excitation at resonance is:

Pavg =
A2mζ e

4ω ζm + ζ eð Þ2 (1)

where A is the input acceleration amplitude, m is the
seismic mass, ζm is the mechanical damping ratio, and
ζe is the electrical damping ratio. (Mitcheson et al. 2004).

Notice that the leading terms A2 and ω in (1) are
properties of the input alone. Determining dominant fre-
quencies is a major component of the classification system
presented in this study; thus, in order to make classifica-
tion more straightforward, spectrograms filtered by only
plotting frequency content that is greater than ½ the max-
imum value of A2=ω in each FFT frame were plotted along-
side unfiltered spectrograms. This filtering process made
“dominant” frequencies more distinct, resulting in easier
classification of the signal. See Figure 1 for an example
spectrogram. Refer to (Rantz and Roundy 2016) for more
information on the spectrogram generation procedure and
subsequent signal classification.

Signals with Distinct Dominant Frequencies

Knowledge of the frequencies at which the input power is
concentrated has major implications in the design of a
VEH architecture, and is therefore of critical importance
in any classification scheme intended to shed light on the
kinds of vibrations that could be encountered by VEHs.

A dominant frequency in the context of this study is
a distinct frequency in the signal spectrogram at which
the value of A2=ω is large relative to other frequencies
that persists for a substantial duration of the signal.

Figure 1: Filtered (top) and unfiltered (bottom) spectrogram used for
classification.
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Vibration signals may have zero, one, or more dominant
frequencies. Note that the term dominant frequency is
derived from the degree to which a particular frequency
dominates (in terms of A2=ω value) a single FFT
window, and is thus somewhat of a misnomer; a domi-
nant frequency need not remain at a single frequency
throughout the length of the spectrogram.

The time-varying behavior of the dominant frequen-
cies throughout the duration of the signal is also used for
classifying the signal. A dominant frequency is consid-
ered stationary if the frequency at which it occurs does
not change much during the length of an input signal. It
is possible for some, all, or none of the dominant
frequencies of a signal to be stationary.

Signals without Distinct Dominant
Frequencies

Many vibration signals do not have distinct, dominant
frequencies. Many of these signals can be best described
as white noise and filtered noise. For simplicity of classi-
fication, two classifiers were employed in this study to
describe signals without distinct, dominant frequencies:
White Noise and Filtered Noise.

Amplitude and Noise Tags

Vibrations with inconsistent acceleration amplitudes
present unique challenges to nonlinear VEH designs,
where both the amplitude and frequency of an input
vibration have the capacity to dramatically affect the
power output. In order to catalog vibrations with signifi-
cant swings in amplitude without creating another clas-
sification dimension, an amplitude tag is applied to all
vibrations that change at least (an arbitrarily selected)
50% over the length of the signal.

Classification Methodology

The entire NiPS database of signals was first down-
loaded, along with the signal metadata, by virtue of an
automated script; at the time of execution, the script
downloaded a total of 329 different signals, each with
X, Y and Z channels. Spectrograms were then generated
for each axis of the signal. The signals, with their asso-
ciated metadata and spectrograms, were then manually
inspected. Signals that did not meet minimum quality
criteria were discarded. This process removed 218

signals, leaving 111 left for the study. The classification
of each spectrogram was performed manually, by visual
inspection of both the spectrogram image file, as well as
the (interactive) MATLAB-FIG file.

Vibration Classification Results

Breakdown of Signals by Source

A total of 333 spectrograms were analyzed for the study.
A breakdown of all signals by source classification is
presented in Figure 2.

Breakdown of Signals by Spectrogram
Classification

A breakdown of all signals by spectrogram classification
is presented in Figure 3.

Most of the signals analyzed in the study can be
classified as having a single, dominant frequency. Over
a quarter of the total signals can be characterized as
lacking a dominant frequency, and are better described
by either the White Noise or Filtered Noise categories. A
relatively small number of the signals could be classified
as having more than one distinct, dominant frequency.

Breakdown of Individual Source
Classifications

Perhaps the most important results concern how the sig-
nals were characterized for each source. Figure 4 shows the
breakdown of characterizations for the Animal sources
analyzed in the study.

Animal, 66

Machine, 
66

Vehicle, 147

Structure, 33
Unknown, 21

All Signals by Source Classification

Figure 2: All 333 signals from the study, sorted by source
classification.
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The majority of Animal signals can be described as hav-
ing dominant frequencies that are nonstationary.

Figure 5 shows the breakdown of characterizations
for Machine sources. In this case, the vast majority of
signals exhibit either stationary frequencies or are best
characterized as noise.

Figure 6 shows the breakdown of characterizations for
Vehicle sources. Vehicle sources have the most variability
in their characterizations; no single category dominates
over the others. Dominant frequencies constitute the lar-
gest combined category, making up 62% of the classifica-
tions. The largest single category is “All Nonstationary,”
consuming 31% of the total characterizations. This is,
perhaps, no surprise; as a vehicle accelerates and decele-
rates, it is reasonable to assume that the vibrational char-
acteristics will vary with time. “All Stationary” is the
second largest category. This may be explained by
steady-state vehicle motion; a car moving at constant
speed on a highway, for example, may not have any
vibrational characteristics that change over the length of
the signal.

Figure 7 shows the breakdown of characterizations
for Structure sources. For this analysis, a “structure”
relates to infrastructure items such as bridges, high-
ways, and buildings. The majority (64%) of the signals
derived from Structure sources can best be described as
“noisy.”

64%

1%

33%

2%

Animal Sources

All Nonstationary

Some Nonstationary

All Stationary

Filtered Noise

Figure 4: Breakdown of animal sources.

1 Dominant, 
176

2 Dominant, 
39

3 Dominant, 
10

5 Dominant, 
1

White Noise, 
41

Filtered
Noise, 

55

All Signals by Spectrogram 
Classification

Figure 3: All 333 signals from the study, sorted by spectrogram
classification.

9%

58%

7%

23%

3%

Machine Sources

All Nonstationary

Some Nonstationary

All Stationary

Filtered Noise

White Noise

NA

Figure 5: Breakdown of Machine sources.

31%

3%
28%

22%

15%

1%

Vehicle Sources

All Nonstationary

Some Nonstationary

All Stationary

Filtered Noise

White Noise

NA

Figure 6: Breakdown of vehicle sources.

3%

27%

52%

12%

6%

Structure Sources

All Nonstationary

All Stationary

Filtered Noise

White Noise

NA

Figure 7: Breakdown of structure sources.
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Amplitude Tag

Recall that another important piece of information rele-
vant to VEH design is the time dependence of the vibra-
tion amplitude, and that this information is conveyed in
this study by virtue of an amplitude tag. The amplitude
tag can be applied to all classifiable signals; that is,
signals not classified as “NA.”

Figure 8 displays the frequency with which the
amplitude tag was applied to signals, sorted by source
classification. It is very clear that time-dependence of
vibration amplitude is common in real-world vibration
signals, regardless of source.

Method for Comparing Linear and
Nonlinear Harvester Architectures

Two vibration energy harvester architectures – one linear,
and one with a nonlinear cubic stiffness function – were
compared using six representative input signals in order
to determine the degree to which the introduction of
nonlinearity improves power output, if at all.

The power extracted from the harvester via the elec-
tromechanical transducer is assumed to act as an ideal
linear damper, as in the VDRG model (Mitcheson et al.
2004). The harvester architectures under consideration
may all be described by:

m€z + bm + beð Þ _z + fs zð Þ= − €y (2)

where z is the relative displacement between the base of
the harvester and the harvester seismic mass, m is the
seismic mass, bm is the mechanical vicious damping
coefficient representing mechanical losses, be is the elec-
trical damping coefficient representing the damping
imposed by the power transduction mechanism, fs(z) is
the restorative force, and y is the displacement of the
base; consequentially, the term y represents the input
vibration described by an acceleration signal. A sche-
matic of the system model described by eq. (2) can be
found in Figure 9

In the case of a linear harvester, the restorative force is
proportional to displacement:

fs zð Þ= kz (3)

where k is the linear spring constant. Equation (3) in
conjunction with eq. (2) represent the VDRG model
(Mitcheson et al. 2004). A cubic stiffness function is
employed for the nonlinear harvester architecture:

Animal Machine Vehicle Structure Unknown

No Amplitude Tag 15 18 36 15 6

Amplitude Tag 51 46 110 16 9
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Figure 8: Prevalence of the amplitude tag, broken down by source classification.

Figure 9: A schematic of the system model described by (2).
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fs zð Þ= βz + αz3 (4)

where β is the linear stiffness coefficient, and α is the
cubic stiffness coefficient. When the stiffness function
described in eq. (4) is substituted into eq. (2), this
becomes the familiar Duffing oscillator excited by the
input vibration − y. When posed in this form, equation
eq. (4) conveniently encapsulates a range of qualitatively
different nonlinear architectures (Daqaq et al. 2014). If
β > 0, α=0, then eq. (4) reduces to eq. (3); that is, the
restorative force is linear. If β ≥0, α > 0 (α < 0), the restora-
tive force can be viewed as a hardening (softening)
spring. Finally, if β < 0, α > 0, the resultant system is bis-
table in nature, characterized by two potential energy
wells corresponding to two stable equilibria separated
by a potential barrier.

In order to approximate a ceiling on the power that
a harvester architecture could achieve, optimization
must be performed on the system parameters with the
goal of maximizing power dissipation through the elec-
trical damper for a given input signal. The seismic mass,
m, and the mechanical damping, bm. from eq. (2) were
considered to be fixed parameters for both linear and
nonlinear architectures with values of 1 and 0.02,
respectively. The electrical damping, be, was an optimi-
zation parameter for both architectures.

For the linear architecture exhibiting a stiffness func-
tion described by eq. (3), the only additional parameter
over which optimization was performed was k, the linear
stiffness coefficient. Thus, candidate solutions for the
optimization of the linear harvester architecture were
two-dimensional, consisting of an electrical damping
value, be, and a stiffness value, k.

For the nonlinear architecture exhibiting a stiffness
function described by eq. (4), two additional optimiza-
tion parameters were introduced: β, the linear stiffness
coefficient, and α the cubic stiffness coefficient.
Thus, candidate solutions for the optimization of the
nonlinear harvester architecture were three-dimen-
sional, consisting of an electrical damping value, be, a
linear stiffness coefficient, β, and a cubic stiffness coef-
ficient, α.

An objective function was formed relating the rele-
vant harvester optimization parameters to the power
output of the harvester subject to a particular input
signal. The relevant design parameters were the input
to the objective function; these parameters were used to
populate the values in the differential equation that
describes the system in eq. (2) and a numerical solver
was used to compute the relative motion of the seismic
mass in response to the signal input. Having solved for

the relative velocity of the mass over the length of the
signal T, the power dissipated in the electrical damper
was computed via numerical estimation of
Pavg = be

Ð T
0 _z2dt, which was then returned as the output

of the solver. The goal of the optimization was to find
the design parameters that maximize the harvester out-
put power.

A Pattern Search (PS) algorithm was used in
MATLAB (Mathworks 2016) to determine the optimal
design parameters for the linear and nonlinear architec-
tures under consideration. Because the objective func-
tion requires the numerical solution of eq. (2) subject to
fairly long input signals, it was deemed too costly to
employ a search method (which may require many func-
tion evaluations) in order to inform an initial point for
the optimization algorithm. Therefore, in an effort to
improve the likelihood that the optimization algorithm
converged on or near the global maximum, the algo-
rithm was run multiple times for each signal and each
architecture using various initial points, including: a
best guess based on the appearance of the spectrogram
and, in the case of a linear (nonlinear) architecture, the
points near the optimal output for the nonlinear (linear)
architecture.

Finally, in order to compare the architectures, the
percent change in power from the optimal linear har-
vester to the optimal nonlinear harvester (found using
the PS algorithm) was computed for each representative
signal used for the comparison.

Linear and Nonlinear Architecture
Comparison Results

Optimal harvester designs were determined using the
methodology described in Section 4 and the percent
improvement over linear architectures was computed.
Approximate values for the percent improvement, as
well as values for the optimal β and α, are presented in
Table 1.

A linear harvester architecture generally performed
as well as the nonlinear harvester architecture in all but
one case – Car in highway/X/171 – where the introduc-
tion of a nonlinearity in the restorative force resulted in a
14% improvement of power output over the linear coun-
terpart. As can be seen in Table 1, this single case is also
the only significantly nonlinear architecture determined
to be optimal by the PS algorithm; in the other cases, the
α value (which determines the degree of nonlinearity) is
several orders of magnitude lower than the β value,
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suggesting that the optimal harvester architecture is very
nearly linear in these cases.

Discussion

Classifications and Relationship to VEH
Design

The study classified a broad range of vibrations from an
existing database in order to inform the VEH researcher
of the prevalence and characteristics of vibrations seen in
real world environments.

The study of 333 signals from the NiPS Real
Vibrations database resulted is several interesting con-
clusions about the available dataset:

The majority of signals do not maintain constant
amplitude excitations. This appears to be the case regard-
less of the source classification.

No single vibration classification appears to describe a
single source classification universally. With the exception
of the Unknown source classification (not discussed), the
greatest portion that any single signal classification con-
sumes within a single source is 64% (All Nonstationary,
Animal). This suggests that proper modelling of a signal
from a known source requires more information than
simply the source classification of the signal.

Most Animal sources are best described as having
distinct dominant frequencies that move with time. 65%
of the signals with the Animal source classification have
a dominant component that moved in time. Additionally,
nearly half of the Animal signals were embedded in sig-
nificant levels of noise, as indicated by the number of
signals given the noise tag.

Most Machine sources are best described as having
distinct dominant frequencies that are stationary, and a
substantial portion can best be described using noise. 58%
of the Machine sources analyzed contained dominant
frequencies that remained stationary with time, and 9%

contained dominant frequencies that moved with time.
30% of the Machine sources generated spectrograms that
could best be described as “noisy;” that is, 23% received
the “White Noise” classification, and 7% received the
“Filtered Noise” classification.

No single classification dominates the description of
Vehicle vibrations. Signals with the Vehicle source classi-
fication expressed the most variety in their signal
classifications.

Most Structure sources can be described by some type
of noise. The White Noise and Filtered Noise signal clas-
sifications constitute a combined 64% of signals that also
have the Structure source classification. Nearly all of the
remaining signals were classified as having stationary
dominant frequencies. Of the signals classified using
dominant frequencies, half received the noise tag.

In the case of the single dominant, stationary fre-
quency, it seems unlikely that a novel structure could
provide any substantial increase to the maximum power
output over a harvester based on a linear oscillator (i. e.
characterized by the VDRG model). In fact, it has been
shown that for the case of a simple harmonic input, a
properly designed linear harvester represents the limiting
case of harvester power output (Halvorsen et al. 2013;
Heit and Roundy 2015). Of all the signals in the study,
approximately 23% are characterized by a single domi-
nant, stationary frequency.

If the signal can be classified as having multiple
dominant, stationary frequencies, then it may be possible
to harvest more power from such a signal than could be
harvested by a well-designed linear harvester. For exam-
ple, a multi-mode or wideband harvester might outper-
form the standard linear oscillator in certain cases. Of all
signals in the study, approximately 6% are characterized
by multiple stationary frequencies.

For signals with dominant frequencies that move in
time, a tunable harvester would appear to be an appro-
priate architecture choice, depending on the amount that
the frequencies move with time, the characteristic speed
with which the frequencies move, and the tuning power

Table 1: Comparison of optimal linear and nonlinear harvester architectures.

Signal Title/Direction/Number # Dominant frequencies Nature Improvement Nonlinearity β
[Nm^-]

α
[Nm^-]

Air Pump/Z/  All Stationary % Hardening 77.6 � 103 1.3
Airplane, light turbulence/X/ >  Stationary <%
Car in highway/X/   Stationary % Softening 14.1 � 103 −99.6 � 103

Chicago metro/Z/  Stochastic % Hardening 67.7 � 103 1.0
Electric hand shaver/Z/  Stochastic <%
Car highway/Y/   Stationary <%
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costs of the harvester. Wideband harvester architectures
could also provide benefit for this class of signal; harvest-
ers with multiple vibratory modes, for example, or har-
vesters that employ nonlinear dynamical structures have
the potential to provide an increase in power over a linear
counterpart with a single resonant peak.

Comparison of Linear and Nonlinear
Architectures

Much research has been focused on wideband harvesters
exhibiting a nonlinear stiffness function, usually charac-
terized by a cubic stiffness function. Thus, it is worth-
while to investigate how often – in the sample set
characterized here – this architecture might provide a
significant benefit over a standard linear harvester
design. As previously mentioned, such nonlinear harvest-
ers may provide a potential improvement in cases with
multiple dominant frequencies or a single moving fre-
quency. Hoffmann (Hoffmann, Folkmer, and Manoli
2012) showed an improvement of 479% for a test case
in which the frequency was linearly swept between a low
value and a high value using a monostable nonlinear
harvester when compared a linear architecture reference
design. The amplitude was held constant for this test
case. In the same study, a bi-stable harvester showed
very little improvement for multiple stationary frequen-
cies. However, nonlinear harvester architectures repre-
sented a significant improvement for an input
consisting of band-limited noise. Daqaq (Daqaq 2011)
has shown that the shape of the potential function does
not affect the power that can be harvested from white
noise. Therefore, it is reasonable to conclude that the
categories where a significant improvement could be
made from a nonlinear harvester are single dominant
nonstationary frequency, filtered noise, and multiple
dominant stationary frequencies. Taken together, these
comprise approximately 53% of the total signals. It
should be noted, however, that such nonlinear structures
have a strong amplitude dependence and the majority of
signals analyzed have shifting amplitudes. Thus, the real
percentage of signals for which a nonlinear design would
represent an improvement over a linear design will be
somewhat lower.

The comparison of linear and nonlinear harvester
architectures described in Section 4 resulted in Table 1
in Section 5. Table 1 suggests that a nonlinear harvester
architecture with a cubic stiffness function (softening
type, a nonlinear monostable configuration) can improve
power output when the input signal can be best

described as having a single dominant frequency that
moves in time; this conclusion is consistent with results
from Hoffmann (Hoffmann, Folkmer, and Manoli 2012).
For the particular signal under consideration, however,
the power was only 14% greater than the linear
counterpart.

For the other signals described in Table 1, the non-
linear architecture did not appear to significantly
improve power output over a linear counterpart; a linear
harvester came within 1% of the power output of a non-
linear harvester in all but a single case. This suggests
that, in at least these cases, a linear harvester architec-
ture could provide optimal power output.

Limitations of the Study

There are numerous limitations to the study:
Uncertainty in measured data. As previously

described, nearly 2/3 of available signals were discarded
due to poor quality. Of the signal data that appeared to
be useful to the study, the majority were measured using
an iPhone as the data acquisition system. This raises
several concerns as to the validity of the data; namely,
it is unknown if the uploader is qualified to be making
careful measurements of the vibration signals, the iPhone
sampling rate is limited to 100Hz in the database, there
are no specifications regarding the recording conditions
(mounting and placement of the iPhone, events that
occurred during recording, etc.), the iPhone model used
for recording is unknown, and at least one source (Allan
2011) states that the maximum resolution of a particular
iPhone accelerometer model is 18mg. Thus, many of the
signals that passed the crude quality check may not be
valid representations of the phenomena that was
intended for recording.

Subjectivity of analysis. One inescapable consequence
of having a human visually examine spectrograms for the
purpose of signal classification is the subjectivity of the
resulting classifications; although efforts were put in
place to prevent obvious misclassification (such as fixing
the definition of a particular signal classification before
classification began), in many cases, two observers may
disagree on the classification of a particular signal. For
example, a signal that appears to be characterized by a
single dominant frequency embedded in noise to one
observer may appear to be better characterized as filtered
noise to another observer.

The comparison of linear to nonlinear harvester
architectures described in Section 4 also suffers from
several limitations that make generalization of the results
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difficult. Firstly, the output of the PS optimization algo-
rithm is highly dependent on an initial point as a first
iterate (Mathworks 2016). Because of the computational
cost of objective function evaluations (which involves
numerically solving (2) over lengthy input signals) a
search method that could inform the initial point for the
PS algorithm (which would likely require many objective
function evaluations) was abandoned in exchange for a
“best guess” based on the appearance of the signals’
spectrograms. Consequentially, it is possible that entire
basins of attraction were overlooked by the PS algorithm,
and the optimal points at which the algorithm arrived
represent locally optimal designs. Furthermore, limits on
the accuracy of the numerical solver output, limits on the
mesh resolution of the PS algorithm, as well as chaotic
motion that could be exhibited by a nonlinear harvester
architecture subject to the representative signals used for
the comparison, will result in an objective function that is
nonsmooth over the solution space; therefore, even if one
could guarantee that the initial point for the PS algorithm
is placed in the basin of attraction that contains the
global optimum, it could not be guaranteed that the PS
algorithm could find the global optimum. As a result of
these shortcomings, it cannot be stated with certainty
that the cases in which a nonlinear harvester architecture
did not appear to improve power output over a linear
counterpart represent cases in which a nonlinear har-
vester architecture could not improve power output over
a linear counterpart.

Future work would include a more refined approach
in comparing linear and nonlinear VEH architectures.
One potential improvement to the proposed method
would involve applying a search method to the optimiza-
tion procedure in order to inform the initial point of the
PS algorithm. Such search methods can help to ensure
that multiple basins of attraction are considered in the
solution space, improving the likelihood that the final
output of the PS algorithm is the global optimum.

Conclusions

333 vibration signals from the NiPS Laboratory “Real
Vibration” have been characterized and classified by key
vibration characteristics. A primary goal of this classifica-
tion is to provide insight into the design of vibration
energy harvesters (VEHs). Determining the prevalence of
vibration signals for which standard VEH architectures are
optimal is of particular interest. The vibrations were clas-
sified by source (i. e. machine, animal, vehicle, structure,
unknown). The signals were further characterized by the

number of dominant frequencies, whether these frequen-
cies are stationary or move with time, or whether the
signal was best characterized by noise, either broadband
or filtered. A comparative analysis of linear and nonlinear
harvester architectures was performed using six represen-
tative signals as inputs. The results of the comparison
suggest that a nonlinear harvester architecture exhibiting
a cubic stiffness function may offer improvement over a
linear counterpart if the input signal can best be described
as having a single dominant frequency that moves in
time; for the particular signal under consideration, the
degree of power improvement was 14%. However, a linear
architecture performed approximately the same for the
remaining five representative signals used in the compara-
tive analysis. A qualitative analysis of the set of signals
used in the study indicates that a standard linear oscillator
harvester is likely the best design for at least 23% of the
signals and that harvesters with the common cubic non-
linear stiffness function could offer an improvement at
most 53% of the time; this is an initial conclusion based
on signal classifications and more study is required to
refine this result.
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