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Experimentally validated model and
analytical investigations on power
optimization for piezoelectric-based
wireless power transfer systems
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Abstract
This article presents a near-field low-frequency wireless power transfer system utilizing a piezoelectric transducer with mag-
net tip mass as a receiver. The interaction moment between the uniform B field generated by a Helmholtz coil and the mag-
net is the means to deliver the electrical energy from the transmitter to an electrical load, which is therefore referred to as
magneto-mechano-electric effect. This is the first time a complete equivalent circuit model of such a structure is developed
and experimentally verified. Based on the lumped model, various aspects of the power optimization problem are thoroughly
discussed, providing a comprehensive view of the system and an important premise for further study.
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1. Introduction

With the rapid development of technology, the Internet
of Thing is beginning to shape the future of our modern
world in which smart sensing systems require electro-
nics that need not be plugged in or regularly recharged
(Zhu et al., 2015; Hassan et al., 2017). Energy harvest-
ing (EH) and wireless power transfer (WPT) hence
become promising alternatives to the batteries currently
in use (Roundy and Wright, 2004; Beeby et al., 2006;
Mitcheson et al., 2008; Erturk et al., 2009; Kurs et al.,
2007; Sample et al., 2011; Kiani and Ghovanloo, 2012;
Pacini et al., 2017; Song et al., 2017). While the perfor-
mance of EH systems is strongly dependent on the con-
ditions of the environmental power source (Wei and
Jing, 2017), WPT provides deterministic controllable
techniques for actively transferring power from an
optional source to desired electronic applications
(Assawaworrarit et al., 2017; Paul and Sarma, 2018).

For biomedical applications, the amplitude of the
magnetic field that can be applied to humans is con-
strained by the driving frequency due to safety stan-
dards (IEEE C95.1-2005, 2006; IEEE C95.6-2002,
2002). For instance, a maximum permissible field at
1 MHz is ’200 mT, while that at 1 kHz is ’2mT This

relationship between maximum allowable magnetic
field and frequency limits the potential of near-field
WPT systems such as capacitive or inductive coupling
(Huang et al., 2013; Barman et al., 2015), since the
operating frequency of these devices is typically in the
range of MHz.

Instead of inducing voltage on a receiver as two reso-
nant inductively coupled coils do, Challa et al. (2012)
proposed a near-field WPT system using an electromag-
netic transducer to convert the mechanical energy from
the oscillating magnet tip mass to electrical energy. The
authors focused on analyzing the system efficiency
(defined by the ratio of the power delivered to a load
and the power input to the network), which may not be
a key factor of a low-power system. Meanwhile, the
electrodynamic coupling coefficient between the
mechanical and electrical domains was not fully
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modeled, and its influence on the mechanical dynamics
and maximum output power of the WPT system was
not discussed. In related works, other authors reported
several experimental observations indicating the poten-
tial application of piezoelectric devices for harvesting
power from current-carrying conductors or ambient
low-frequency magnetic fields (Paprotny et al., 2013;
Liu and Dong, 2014; Han et al., 2015). However, the
entire model for these designs has not been addressed in
a systematic and complete manner.

In the context of WPT, low-frequency systems gain
more and more attractions in the last recent years.
Garraud et al. (2014) introduced an alternative archi-
tecture, in which two torsional springs, a permanent
magnet, and a coil were used as a receiver. It should be
noted that the inductive coupling between the transmit-
ter and receiver coils was shown to be negligible; the
mechanical oscillation of the magnet generated most of
the power at the receiver. Later prototypes by the same
group demonstrated capabilities of utilizing two trans-
mitting technologies: a coil-based transmitter and a
rotating-magnet transmitter (Garraud et al., 2018).
Experiments on through-body and multi-receiver trans-
missions were conducted, opening the way for biomedi-
cal implants and wearables. Another concept based on
the continuous rotation of the permanent magnet was
presented (Garraud et al., 2019). Under steady-state
operation, the rotating magnet acts as a synchronous
machine rather than a resonant system. This technique
enables transferring power over a wide range of fre-
quencies, as opposed to at a particular frequency
nearby the mechanical resonance of the receiver.

Based on the Euler–Bernoulli beam theory, the
closed-form distributed parameter solutions for piezo-
electric EH from base excitations were obtained and
thoroughly analyzed for both unimorph and bimorph
cantilever configurations (Erturk & Inman, 2011, 2009).
Apart from that, this article aims to present an explicit
lumped-parameter model, which is widely used for
modeling vibration-based energy harvesters and is con-
venient to approximately describe the behavior of dis-
tributed physical systems. For a cantilever beam, if the
proof mass to the beam mass ratio is significantly large,
the single degree-of-freedom lumped-element model
and the distributed parameter model are considerably
the same (Erturk and Inman, 2008a, 2008b). The expli-
cit form of the transduction factor and the analytical
solution of the power transferred to a load are derived
as functions of the device dimensions and the external
B field. In addition to maximize the transmission effi-
ciency, it is of great interest to understand how to opti-
mize the generated power under different situations.
This is therefore one of the central objectives of this
study.

The outline of this article is as follows. First of all,
we establish a complete equivalent circuit model of the
piezoelectric-based low-frequency wireless power

transfer system (WPTS) in section ‘‘Mathematical
model.’’ We then experimentally validate the developed
model in section ‘‘Experimental validation.’’ Based on
the validated model, sections 4 and 5 further present
analytical solutions of the power optimization problem,
providing a comprehensive theoretical analysis under
different standpoints. Various effects of (i) the thick-
ness ratio constraint, (ii) material properties (e.g. the
piezoelectric strain coefficient and Young’s modulus of
the shim layer), and (iii) the leakage current of the
piezoelectric transducer are given in section 6. Section 7
finally summarizes the study.

2. Mathematical model

Figure 1 illustrates the piezoelectric bimorph/magnet
magneto-mechano-electric (MME) composite cantile-
ver, including definition of the beam parameters such
as w, tp, ts, L, L0, and Lm. The mechanism that transfers
power to the MME transducer is similar to that of a
piezoelectric energy harvester; however, it is different
from an acoustic WPT system presented in the litera-
ture (in which ultrasonic waves are transmitted between
two piezoelectric transducers). Assuming that the alter-
nating current (AC) magnetic field Hac of the
Helmholtz coil is ideally uniform, a pure moment MB

acts on the magnet tip mass M, which is given by Liu
and Dong (2014)

MB = JrCMHac ð1Þ

where Jr is the remanent magnetic polarization and
CM = L3

m is the volume of the cubic magnet. Here, the
vibration amplitudes are assumed to be small. The
equivalent force positioned at the center of mass of MB,
which results in the same displacement, is (Bucciarelli,
2009)

FM =
3

2

MB

leff
ð2Þ

where the effective length is leff = (L+ L0)=2. It should
be noted that for the use of thick single-coil (Challa
et al., 2012), the moment MB and a force FB co-exist
due to the field and the field gradient, respectively.
Under such a circumstance, the pure force FB acting on
the magnet in the same vibration direction x is (Challa

Figure 1. Schematic of MME transducer.
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et al., 2012) FB = JrCM(∂Hac(x)=∂x). The total equiva-
lent force is thus F =FM +FB. However, for the cur-
rent case (i.e. we are considering a uniformed field),
F =FM only, and the effect of FB is out of scope of this
article. The effective mass of the piezoelectric transdu-
cer consisting of the magnet mass M and the beam
mass mb is (Rao, 2010, section 2.5)

m=M +
33

140
mb ð3Þ

where mb =wL(2tprp + tsrs) and M = rMCM. r denotes
the mass density of material. The effective short-circuit
stiffness is approximated as (Erturk and Inman, 2011)

K0 =
3 YIð Þc

l3
eff

ð4Þ

where (YI)c is the flexural rigidity of the composite beam.

The expression of (YI)c for bimorph configuration is
(Roundy and Wright, 2004)

YIð Þc = 2Yp

wt3
p

12
+wtp

ts + tp

2

� �2
" #

+ Ys
wt3

s

12
ð5Þ

where Yp and Ys are the elasticity constants of the piezo-
electric layers and the substructure, respectively. The
coupling between the electrical and mechanical domain
is conveniently modeled as a linear two-port transdu-
cer, as depicted in Figure 2, where b is the mechanical
damping coefficient and the electrical load is simply
represented by a resistance RL. The linear two-port
equations for the piezoelectric transducer can be writ-
ten as follows (Tilmans, 1996; Halvorsen, 2016)

FT =K1x+
G

C0

q; ð6Þ

VT =
G

C0

x+
1

C0

q ð7Þ

where FT is the transducer force, VT is the voltage
across the terminals of the electric port,
K1 =K0 +G2=C0 is the open-circuit stiffness, C0 is the
clamped capacitance, G is the transduction factor, and
q is the charge on the positive electrical terminal.

Since the physical model studied in this work has a
tip mass with appreciable length, the distribution of the
tip mass over a finite span (i.e. Lm) is taken into account
instead of a concentrated mass model. Adapted from
Kim and Kim (2011), the static deflection shape func-
tion f(y) can be expressed as two polynomial functions
corresponding to two portions of the beam with and
without the mass

0 ł y ł L0 :

f1 yð Þ= qm
Lm L0 + Lð Þ

4
y2 � Lm

6
y3

� �

+ qb
L2

4
y2 � L

6
y3 +

1

24
y4

� �
;

ð8Þ

L0 ł y ł L :

f2 yð Þ= qm
L0LmL

2
y� L2

0Lm 2L+ Lmð Þ
12

� �

+ qb
L0 L2 + L0Lm + 2L2

m

� �
6

y�
L2

0 L2 + 2L0Lm + 5L2
m

� �
24

� �

ð9Þ

where

qm =
24

L0 2Lm 4L2
0 + 6L0Lm + 3L2

m

� �
+ qr 3L3

0 + 10L2
0Lm + 12L0L2

m + 6L3
m

� �� �� 	 ; ð10Þ

qb = qmqr; ð11Þ

qr =
Lmmb

LM
: ð12Þ

Depending on whether the wiring is in parallel or
series (Erturk and Inman, 2011), C0 and G are evalu-
ated differently. For the case of series connection

SC0 =
1

2
eS33

wL

tp
; ð13Þ

SG= � e31w
tp + ts

2

df1 yð Þ
dy







y=L0

=
�2e31w tp + ts

� �
3 M +mbð ÞL2 � 3mbL0L+mbL2

0

� �
6 M +mbð ÞL3 � 6mbL0L2 + 2L2

0L M + 2mbð Þ � L3
0mb

� �
ð14Þ

where eS33 is the permittivity component at constant
strain with the plane-stress assumption of a thin beam
(i.e. eS33 = eT33 � d2

31=sE11 where d31 is the piezoelectric
strain constant, sE11 is the elastic compliance at constant
electric field, and eT33 is the permittivity component at

Figure 2. Equivalent two-port model.
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constant stress). e31 is the effective piezoelectric stress
constant, which can be given as e31 = d31=sE11 based on
the same assumption.

For the case of parallel connection

PC0 = 4SC0; ð15Þ
PG= 2SG: ð16Þ

It should be noted that the output power is indepen-
dent of series/parallel configurations.

With a time harmonic drive force FM(t)=F0 cos (vt)
of angular frequency v and a resistance RL directly con-
nected to the electrical ports, the transverse velocity of
the tip mass Um and the output voltage VT can be
derived from the equivalent circuit model as

Um =
F0

ZM
; ð17Þ

VT =

F0 � jvm+
K0

jv
+ b

� �
Um

G
ð18Þ

where the impedance ZM reads as

ZM = jvm+
K0

jv
+ b

� �
+G2ZR; ð19Þ

ZR =

1

jvC0

RL

1

jvC0

+RL

=
RL

1+ jvRLC0

: ð20Þ

The power transferred to the load is then given by

P=
1

2

jVTj2

RL

=
1

2

G2F2
0

RL

jZRj2

jZMj2
=

1

2
DK

v2t

1+ vtð Þ2
F2

0

vjZMjð Þ2

=
1

2
DK

v2t

1+ vtð Þ2
F2

0

.

vb+DK
vt

1+ vtð Þ2

" #2

+ K1 � mv2 � DK
1

1+ vtð Þ2

" #2
8<
:

9=
;
ð21Þ

where the electrical time scale is t =RLC0; the differ-
ence between the highest and the lowest mechanical
stiffness is denoted as DK =G2=C0 and
jX0j=F0=(vjZMj) is the displacement amplitude of the
tip mass. Formula (21) is the main objective to validate
the model, where the frequency and B-field responses
are the two most important aspects.

3. Experimental validation

Figure 3 shows the experimental setup, in which the cir-
cular Helmholtz coils are used as a transmitter. The

generated B field is obtained using an AC milligauss
meter (i.e. which is in root mean square (RMS) equiva-
lent units). The receiver consists of a bimorph PZT-
5A4E cantilever beam with a permanent magnet
attached at its tip which is located in the center of the
two coils. The Helmholtz coils are controlled by a
Tektronix function generator connecting to a Rigol
power amplifier. The induced voltage across the load
resistance is measured by a laptop oscilloscope and the
average output power is then computed as
P= 1

T

R T
0
(V 2

T(t)=RL)dt. The mechanical damping coeffi-
cient b is determined by fitting the model to the experi-
ment with B= 40:5

ffiffiffi
2
p

mT and RL = 1MO. The model
parameters are now given and listed in Table 1, which
is then used for validating all the following cases.

Table 1. Model parameters.

Parameters Value

Permeability of free space, m0 4p310�7 H=m
Beam width, w 3.175 mm
Beam length, L 29.7 mm
Thickness of each PZT layer, tp 0.14 mm
Elastic constant of PZT, Yp 663109Pa
Piezoelectric constant, d31 �190310�12m=V
Nominal capacitance, C0 4:56 nF
Mass density of PZT, rp 7800 kg/m3

Thickness of center shim, ts 0.1 mm
Elastic constant of center shim, Ys 1003109 Pa
Mass density of center shim, rs 8500 kg/m3

Dimension of cubic magnet, Lm 3:175 mm
Mass density of Neodymium, rM 8630 kg/m3

Residual flux density of magnet, Jr 1.45 T
Mechanical damping coefficient, b 4:13310�3 N s=m
Damping ratio, z0 = b=(2mv0) 1:03%
Mechanical quality factor, Q0 48:5

PZT: lead zirconate titanate.

Figure 3. Experiment setup, in which a circular Helmholtz coil
is used as a transmitter and the magnet tip mass of a
piezoelectric-based receiver is placed at the center of the coil.
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Figure 4 shows a good agreement between the model
results and the measurements for both B= 40:5

ffiffiffi
2
p

mT
and 50:5

ffiffiffi
2
p

mT when the drive frequency is swept from
50 to 150 Hz over a time duration of 40 s. Note that
40.5 and 50.5 are RMS values measured by the AC
milligauss meter. The load resistance is RL = 1 MO and
the corresponding optimal frequency is experimentally
found at about fr = 108:5Hz. Increase in the input
magnetic field strength results in stronger moment act-
ing on the magnet tip mass and therefore higher power
delivered to the load. Figure 5 shows that the accuracy
of the model is consistent when the applied magnetic
flux density amplitude is discretely varied from 0 up to
B= 89:5 mT. The load resistance is kept the same as
that of in Figure 4 and the drive frequency is fixed at
fr = 108:5Hz. The transferred power obtained from
experiments and simulations are almost identical, which
is a quadratic function in terms of the B-field ampli-
tude. In summary, the lumped model has successfully
predicted the two most important behavior that are fre-
quency response and magnetic field response.

4. Power optimization principles: gradient
descent method

We now utilize the developed model to further investi-
gate the power optimization problem at a given applied
B field with respect to the load and the drive frequency
for different possible cases. This is of interest not only
from the mathematical point of view but also to provide
a complete physical insight of the WPT system.

Case I. At v=v0 =
ffiffiffiffiffiffiffiffiffiffiffi
K0=m

p
, the optimal load and

the corresponding optimum output power are given by

R
opt
L v=v0
j =

1

v0C0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0 + 1
p ; ð22Þ

Popt
v=v0
j =

F2
0

4b
M0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0 + 1

q
�M0

� �
: ð23Þ

Here, the resonator figure of merit is defined as
Mf =DK=(bv) (Vittoz, 2010). In particular, at the reso-
nant frequency M0 =DK=(bv0).

Case II. At v=v1 =
ffiffiffiffiffiffiffiffiffiffiffi
K1=m

p
, we get

R
opt
L v=v0
j =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

1 + 1
p

v1C0

; ð24Þ

Popt
v=v0
j =

F2
0

4b
M1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

1 + 1

q
�M1

� �
ð25Þ

where M1 =DK=(bv1). In general, Poptjv=v0
and

Poptjv=v1
are not identical; however, for moderately

coupled systems M0’M1, the two maximum powers
approximately coincide.

Case III. The solution of the optimal load consid-
ered as a function of the drive frequency and the
other system parameters is calculated by

R
opt
L vj =

1

vC0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K0 � mv2ð Þ2 + vbð Þ2

K1 � mv2ð Þ2 + vbð Þ2

s
: ð26Þ

We can observe that equation (26) reduces to equa-
tions (22) and (24) when v=v0 and v=v1

correspondingly.

Case 4. We now treat t =RLC0 as a constant (i.e.
RL is kept fixed) and consider v to be a variable
parameter. This investigation is motivated by the
fact that the drive frequency can be easily subjected
to control in WPT systems. Similarly, the stationary
points of the power are determined by dP=dv= 0

or equivalently

2mt2v6 +v4 b2t2 +m2 � 2K1mt2
� �

� K2
0 = 0: ð27Þ

Figure 5. Comparisons of the external B-field responses
between the model simulations and experiments with
RL = 1 MO and fr = 108:5 Hz.

Figure 4. Frequency response comparisons between the
experimental data and simulation results by the model.
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The (real) optimal frequency is derived as follows

vopt =
1

3l1

Lffiffiffi
23
p +

ffiffiffi
23
p

l2
2

L
� l2

� �� 
1=2

ð28Þ

where

l1 = 2 mtð Þ2; ð29Þ

l2 = b2t2 +m2 � 2K1mt2; ð30Þ

L= 27 l1K0ð Þ2�2l3
2+3

ffiffiffi
3
p

l1K0ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27 l1K0ð Þ2�4l3

2

q� �1=3

:

ð31Þ

Figure 6 shows a comprehensive picture of the trans-
ferred power with respect to the normalized angular
frequency v=v0 and the load resistance RL. The corre-
sponding power obtained by using equation (28) is also
included, which is the maximum transferable power at
each value of RL.

Case V. Finally, we consider the condition in which
both the load resistance RL (and therefore, the para-
meterized time constant t) and the drive frequency
v are simultaneously considered as objective
control variables. Stationary point(s) of the general
power optimization problem are given by solving
dP=dt = 0 and dP=dv= 0 simultaneously.
Substituting the optimal time constant topt =R

opt
L C0

from equation (26) into equation (27), the latter
equation reduces to

3v8 � 4av6 + a2 + 2b
� �

v4 � b2 = 0 ð32Þ

where

a= v2
0 +v2

1

� �
1� 4z2

e

� �
; ð33Þ

b= v0v1ð Þ2; ð34Þ

ze =
b

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m K0 +K1ð Þ

p : ð35Þ

Equation (32) can be rewritten as

v2 2v2 � a
� �� �2

= v4 � b
� �2

; ð36Þ

which results in three (positive) distinguished solutions

vm =
a+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 + 12b

p
6

" #1=2

; ð37Þ

vM1
=

a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4b

p
2

" #1=2

; ð38Þ

vM2
=

a+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4b

p
2

" #1=2

: ð39Þ

Here, vM1
and vM1

are real if and only if
ze 2 f(0, z1� [ ½z2, +‘�g, where

z2
1 =

1

4

v1 � v0ð Þ2

v2
0 +v2

1

; ð40Þ

z2
2 =

1

4

v1 +v0ð Þ2

v2
0 +v2

1

: ð41Þ

The condition ze ł z1 is equivalent to

k2 ø k2
cr = 1� 1

2z0 + 1ð Þ2
ð42Þ

where the squared electromechanical coupling factor
0 ł k2 ł 1 and the damping ratio z0 at the short-circuit
resonant frequency v0 are given by

k2 =
G2

K1C0

; ð43Þ

z0 =
b

2
ffiffiffiffiffiffiffiffiffi
mK0

p =
b

2mv0

: ð44Þ

Meanwhile, ze ø z2 leads to 1� k2.1=(1� 2z0)
2.1,

which cannot occur. Equation (36) has a unique posi-
tive solution vm when the coupling is lower than criti-
cal, k2\k2

cr. Therefore, the optimum output power in
this case is attained at vm. However, this power is less
than the maximum achievable power when k2 ø k2

cr. See
Shu et al. (2007), Arroyo et al. (2012), and Liao and
Sodano (2018) for an example. Note that the corre-
sponding optimal load is computed by substituting the

Figure 6. Output power as a function of driving frequency and
load resistance. White solid line: corresponding power with
analytical solution of the optimal frequency expressed in
equation (28).
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optimal frequency back into equation (26). The accu-
racy of these calculations is confirmed by an indepen-
dent numerical method in Appendix 3.

In the currently studied device, the maximal power
points achieved from Cases I, II, and V are consider-
ably the same as depicted in Figure 7. However, we
also found that in some circumstances, the maximum
powers in Cases I and II can drop down to 95% or
92%, respectively, when compared to that of Case V.
An example is discussed in Appendix 3 in which b, G, L,
and tp are mathematically adjusted for proving the
statement. Supporting information for Cases I, II, III,
IV, and V can also be found in Appendices 1 to 3.

5. Power optimization principles:
impedance matching

In addition to the gradient descent method, impedance
matching is a powerful approach for determining the
condition of system parameters under which the power
transferred to the load is maximized. We have shown
that for an inductively coupled WPT system, the simul-
taneous optimization of load resistance and driving fre-
quency generates almost identical output power
compared to the case where the resonator impedance is
matched to a particular load (Truong, 2019). However,
a single-end conjugate-matched circuit at either source
or load does not result in maximum power transfer
through a physical two-port network in general. In
other words, power delivered to a load is maximized by
simultaneous conjugate matching at both ends (source
and load; Truong, 2019). These findings lead to a ques-
tion of how the piezoelectric-magnet WPT system per-
forms under different conjugate matching conditions.
In this section, solutions of impedance matching prob-
lems in comparison with the results presented in section
4 are addressed.

5.1. Impedance matching to the load

From the equivalent circuit model shown in Figure 2,
the output impedance ZO is calculated as

ZO =

1

jvC0

1

G2
jvm+

K0

jv
+ b

� �� 

1

jvC0

+
1

G2
jvm+

K0

jv
+ b

� �� 
 : ð45Þ

Based on the impedance matching technique shown
in Challa et al. (2012), the optimal load is given by

R
opt
L = jZOj=

1

vC0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K0 � mv2ð Þ2 + vbð Þ2

K1 � mv2ð Þ2 + vbð Þ2

s
; ð46Þ

which is the same as in equation (26) (Case III).
Given the fact that the formula R

opt
L = jZOj does not

fully reflect the maximum power transfer theorem fol-
lowed by the impedance matching condition ZL = Z�O
(Kong, 1995; here, ZL denotes the general load impe-
dance), we now consider the complete case where
=fZOg= 0 and RL =<fZOg. The former equation
results in

v�=
v2

0 +v2
1

2
+

k� b2

2m2

� 
1=2

; ð47Þ

v+ =
v2

0 +v2
1

2
� k+ b2

2m2

� 
1=2

ð48Þ

where

k2 = ½ m v0 +v1ð Þð Þ2 � b2�½ m v0 � v1ð Þð Þ2 � b2�: ð49Þ

The latter equation yields

RL =
DK

C0

b

K1 � mv2ð Þ2 + vbð Þ2
: ð50Þ

We find that v�=vM1
and v+ =vM2

and the opti-
mum power obtained by the two methods (complete
impedance matching to the load, and gradient algo-
rithm Case V) are identical.

An attempt to maximize the generated power for a
piezoelectric energy harvester with the presence of an
additional inductor La in parallel/series with the load
resistance RL was proposed in Renno et al. (2009).
However, this method is not appropriate in practice since
it leads to the optimal inductance in the range of a few
H, not yet to mention that its high parasitic resistance
may significantly reduce the power delivered to the load.

5.2. Bi-conjugate impedance matching

The equivalent circuit model in Figure 2 can be gener-
alized for any lossless two-port network as shown in
Figure 8. The applied force FM and the mechanical
damping coefficient b form an effective power source
for the two-port network whose output port is con-
nected to a load resistance RE in the later stage. Given
a constant amplitude of the applied magnetic flux

Figure 7. Maximum transferred power at different optimal
conditions (Cases I, II, and V).
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density, based on the two-port theory (Gonzalez,
1996), the power available for transmission is deter-
mined by

Pavs =
1

8

F2
0

b
: ð51Þ

In other words, Pavs is the largest possible power
that can be delivered to the two-port network and
therefore is the power limit transferred into the load.
Without loss of generality, we consider a lossless net-
work formed by reactances jX and jY as shown in
Figure 9. The source, input, output, and load impe-
dances are

Zs = b; ð52Þ

Zin = jX +
jYRE

jY +RE
; ð53Þ

Zout =
jY b+ jXð Þ

b+ j X + Yð Þ ; ð54Þ

ZL =RE ð55Þ

respectively. The output voltage and power induced in
the load RE are computed as

VE =F0

jYRE

bRE � XYð Þ+ j bY +XRE + YREð Þ ; ð56Þ

PE =
1

2

jVEj2

RE
=

1

2
F2

0 Y 2RE

,

bRE � XYð Þ2 + j bY +XRE + YREð Þ2
h i ð57Þ

and
PE, lim=Pavs:
The bi-conjugate impedance matching conditions are

Zin = Z�s and Zout = Z�L, which leads to

= Zinf g== Zoutf g= 0; ð58Þ

< Zinf g= Y 2RE

Y 2 +R2
E

= b; ð59Þ

< Zoutf g= Y 2b

X + Yð Þ2 + b2
=RE: ð60Þ

Equation (58) is equivalent to

X R2
E + Y 2

� �
+ YR2

E = 0; ð61Þ

b2 +X X + Yð Þ= 0: ð62Þ

Since X and Y must have opposite sign (XY\0), one
possible solution with Y\0 is

X =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b RE � bð Þ

p
; ð63Þ

Y = � RE

ffiffiffi
b
pffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RE � b
p ð64Þ

with the assumption that RE.b. Surprisingly, these
solutions of X and Y also satisfy the other two condi-
tions (equations (59) and (60)). Therefore, equations
(63) and (64) are the final solution of the bi-conjugate
impedance matching problem. Substituting equations
(59) and (60) into equation (57), the optimum power
transferred to the load is

PE opt



 =
1

8

F2
0

b
=PE, lim: ð65Þ

We have proved that the limitation of the output
power is reached by a bi-conjugate impedance matched
system. In general, this conclusion holds for any loss-
less two-port network.

We then apply the analysis above to the particular
piezoelectric resonator used in this article which is
assumed to be a lossless transducer. Using the
reflected impedance technique (Orfanidis, 2016), the
linear two-port model in Figure 2 can be represented
by an equivalent circuit depicted in Figure 10. Letting
X =vm� K0=v, Y = � G2=(vC0), and RE =RLG2, we
recover the case explored in Figure 9. Note that the
power in equation (21) is the same as the power

Figure 8. Generalized equivalent circuit model for any lossless
two-port network.

Figure 9. A circuit model with reactance two-port network.

Figure 10. An equivalent circuit of the linear two-port model.

8 Journal of Intelligent Material Systems and Structures 00(0)



delivered to the reflected resistance RLG2. Expressions
(63) and (64) are written in terms of two variables RL

and v as follows

RL =
1

bC0

m� K0

v2

� �
; ð66Þ

v2 m� K0

v2

� �2

� DK m� K0

v2

� �
+ b2 = 0: ð67Þ

Equation (67) has two solutions that are identical to
equations (47) and (48). The corresponding maximum
output power is exactly equal to PE, lim.

Up to this point, we are able to conclude that three
approaches (1) optimal load and frequency by the gradi-
ent descent analysis, (2) impedance matching to the load,
and (3) bi-conjugate impedance matching collapse to the
same solution, in which the output power attains the max-
imum transferable power (for a given applied magnetic
field). The same result was observed for vibration
energy harvesters under displacement-unconstrained
operation (Renaud et al., 2012; Halvorsen et al., 2013).
From a physics standpoint, optimizing the load and fre-
quency in this circumstance is fully equivalent to apply-
ing the bi-conjugate impedance matching principle to
the piezoelectric-based WPT system under investiga-
tion. This conclusion does not always hold true in gen-
eral. With a lossy two-port network, such as a two-coil
magnetically coupled resonator, optimal load and fre-
quency is not able to reach the maximum possible
power. Additional impedance matching circuits are
required for maximizing the output power to the load.
See Heebl et al. (2014) and Kim et al. (2015) for
examples.

6. Discussion

6.1. Thickness ratio–constrained operation

Many researchers are focused on improving the perfor-
mance of piezoelectric materials. However, constraints
on the geometry of the device are also important.
Geometric constraints may not be problematic for
macro-scale prototypes because the dimensions of the
beam (i.e. piezoelectric and substrate layers) are easily
controllable. However, in the case of microfabricated
generators, where the thickness ratio between piezoelec-
tric and substrate layers is constrained by microfabrica-
tion technologies, the power output could be
significantly affected. Figure 11 depicts the variations in
the generated power with the changes in the thickness
ratio defined as n= 2tp=t0, while the total thickness t0
and the other parameters are unchanged. The optimal
thickness ratio slightly changes with the decrease in
jd31j, for instance, nopt’0:73 with d31 =� 30 m=V and
nopt’0:91 with d31 =� 190 m=V. Furthermore, the
maximum output power (obtained at corresponding
nopt) is nearly saturated with jd31jø 190 m=V for rela-
tively large n (in particular, n ø 0:2). Here, we assume
that the mechanical damping coefficient is nearly
unchanged. This assumption is reasonable since the air
damping mainly depends on the ambient pressure and
the beam length and width (which are kept fixed in this
case).

6.2. Material properties

In addition to the piezoelectric strain constant d31, the
elastic Young’s modulus of the shim Ys also has a
strong influence on both the optimal thickness ratio
and the generated power. This issue has not been fully
explored in the literature. Figure 12 shows the

Figure 11. Maximum transferred power as a function of the
thickness ratio n= 2tp=t0 with different values of d31. The total
thickness of the composite laminate t0 is kept fixed
t0= 0:38 mm and Ys = 100 GPa (see Table 1).

Figure 12. Maximum transferred power as a function of the
thickness ratio n= 2tp=t0 with different values of Ys. The total
thickness of the composite laminate t0 is kept fixed.
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dependencies of Popt and nopt on Ys, in which Popt

increases and nopt reduces with the decrease in Ys. For
instance, at an elastic modulus of Ys = 100 GPa,
Popt = 0:95 mW and nopt = 0:909, while those at
Ys = 25 GPa are Popt = 1:29 mW and nopt = 0:053. In a
general trend, lower Ys results in higher power trans-
ferred to the load at the same thickness ratio. Here, the
total thickness and the mechanical quality factor at
short-circuit resonant frequency of the composite lami-
nate are kept fixed, t0 = 0:38 mm and Q0 = 48:5 (taken
from Table 1). The damping coefficient is calculated by
b=

ffiffiffiffiffiffiffiffiffi
mK0

p
=Q0. This observation can explain the experi-

mental results reported in Annapureddy et al. (2016,
2018) where an optimum power obtained by a Fe-Ga
MME generator was approximately 430% higher than
that of a Ni-based MME prototype. Both devices have
a similar structure and dimensions. The increase is due
to the fact that Young’s modulus of Nickel at the room
temperature is higher than that of Fe-Ga,
NiYs’200 GPa (Luo et al., 2004) in comparison with
Fe�GaYs’140 GPa (Li et al., 2018). If we choose to keep
b fixed and express Q0 as a function of b, the same
trend is observed.

6.3. Leakage current and effective figure of merit

In practice, piezoelectric transducers may have leakage
current that cannot be neglected. This parasitic loss is
modeled as a resistance connected in parallel with the
clamped capacitance of the piezoelectric generator
(Arroyo et al., 2012; Halvorsen, 2016). The power deliv-
ered to the resistive load now becomes

PL =
1

2
1� t

tp

� �
DKv2t

1+ vtð Þ2
F2

0

vjZM + bjð Þ2
ð68Þ

where

ZM = j mv� K0

v

� �
+DK

t

1+ jvt
; ð69Þ

tL =RLC0, tp =RpC0,
1

t
=

1

tL
+

1

tp
: ð70Þ

With arbitrary operating frequencies, the optimal
load is

t
opt
L =

tp K0 � mv2ð Þ2 + vbð Þ2
h i1=2

K0 � mv2ð Þ2 + K1 � mv2ð Þ2 + vbð Þ2 1+ vtp
� �2

� �
+ 2DK v2btp

� �h i1=2
: ð71Þ

At resonance frequency v=v0, equation (71)
reduces to

t
opt
L =

1

v0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ M0 + 1= v0tp

� �� �2
q : ð72Þ

Since DK = k2K1, we can write M = k2Q1v1=v or
M = k2

eQ0v0=v, where the Q factors are Q0 =mv0=b

and Q1 =mv1=b, and the expedient coupling coefficient
is k2

e = k2=(1� k2). Denoting M jv=v0
=M0, we have

M0 =DK=(v0b)= k2
eQ0. By introducing the electrical

quality factor, QC0 =v0tp, equation (72) results in

t
opt
L =

tpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Me + 1ð Þ2 +Q2

C0

q : ð73Þ

The effective (overall) figure of merit is defined by
Me =M0QC0 = k2

eQ0QC0. The optimum delivered power
is

P
opt
L =

1

8

F2
0

b

2Me

Me + 1+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Me + 1ð Þ2 +Q2

C0

q : ð74Þ

For moderate or high coupling, Me � QC0, and the
asymptotic form of the maximum transferable power is

P
opt
L ’Pavs

Me

Me + 1
: ð75Þ

When Rp ! ‘ (tp ! ‘), both equations (74) and
(75) collapse to the case without the parasitic resistance
as shown in equation (65).

The effects of the electrical quality factor QC0 on the
optimal output power are depicted in Figure 13. Other

parameters such as the coupling coefficient k = 0:3 and
the mechanical quality factor Q0 = 48:5 are taken from
Table 1. In this particular case, the discrepancy between
equations (74) and (75) is negligible. The question on

Figure 13. Solutions of the ratio between the optimum output
power P

opt
L and its limit Pavs as functions of QC0, computed by

equations (74) and (75), respectively.

10 Journal of Intelligent Material Systems and Structures 00(0)



how to determine Rp (and therefore QC0) is out of scope
of this article.

6.4. Transmission efficiency

Although the efficiency is not a key factor of a low-
power system (e.g. sensor nodes or wearable/implantable
applications), it is still of interest to study. We found that
the transmission efficiency of the MME configuration is
relatively low in comparison with other WPT system such
as inductively coupled resonators (Truong and Roundy,
2018). Despite this obvious drawback, an advantage of
the MME system is that the applied magnetic field can be
higher at the low frequencies required by the MME sys-
tem while still remaining within safe limits. According to
the IEEE standards, a maximum allowable field at 1 kHz
is 2 mT, 10 times larger than the 200 mT permissible at
1 MHz (IEEE C95.1-2005, 2006; IEEE C95.6-2002,
2002). In the case that the receiver is blocked by a metal
plate, high-frequency devices such as inductive/capacitive
coupled systems cannot be utilized due to the effects of
eddy currents (i.e. also called Foucault currents, which
flow in closed loops within conductors and in planes per-
pendicular to the applied magnetic field).

7. Conclusion

The main aim of this work was to present an experi-
mentally validated lumped-parameter model for a
piezoelectric-based WPT system, providing thorough
analyses on how to optimize the delivered power and
reveal the essential role of the device thickness ratio.
The electromechanical transduction factor was given as
an explicit formula of device geometry, rather than a
derivative (or integral) function reported in the litera-
ture. The solution of the optimal load at the resonance/
anti-resonance frequency (Case I/II), the general opti-
mal load at an arbitrary frequency (Case III), the opti-
mal driving frequency with respect to the load (Case
IV), and the simultaneous optimal load and frequency
(Case V) were analytically derived in explicit forms. It
was shown that for the system under consideration,
optimizing the load and frequency is equivalent to bi-
conjugate impedance matching. The fundamental maxi-
mum transferable power for a given external B field
was revealed, which can be reached by concurrently
tuning the driving frequency and adapting the load
resistance. The model can also be utilized as a means
for further investigations, including the effect of mate-
rial properties such as the piezoelectric strain coefficient
and Young’s modulus of the shim layer.
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Appendix 1

Cases I, II and III: a comparison

Figure 14 gives us a bigger picture than the first two
cases with a wide frequency range. We note that when
the input frequency is far away from v0 and v1, the
optimal load can be approximated by R

opt
off = 1=(vC0).

This analysis can also be applied for non-resonant
transducers.

Appendix 2

Case IV: optimal frequency as a function of load
resistance

Figure 15 presents the changes of the optimal fre-
quency when the load varies from 1 O to 100 MO. It is
to be expected that the optimal frequency of high resis-
tances approaches the anti-resonance (i.e. open-circuit
resonant frequency) and that of low resistances tends
to coincide with the resonant (short-circuit) frequency.
However, when RL 2 ½100kO, 5MO� roughly, the opti-
mal frequency is in between f0 =v0=(2p) and
f1 =v1=(2p) and is given by formula (28). Once again,
the model predicts exactly where the drive frequency
should be for the specific load used in the experiments.

Appendix 3

Case V: numerical solutions

Figure 16 presents the optimum power at each driving
frequency with the corresponding optimal load given
by equation (26). The global maximum output power is
achieved either at vM1

or vM2
, while a local minimum

is observed at vm. Given the facts that asynchronously
switched electronic interfaces (e.g. buck-boost conver-
ters) can be utilized as an effective load resistance (i.e.
by tuning the duty cycle of the switching circuit;
D’hulst et al., 2006, 2010) and the driving frequency of
a WPT system is able to be adjusted easily, the exact
solutions presented in this section offer a convenient
means for realizing an optimal system in practice.

In order to check the accuracy of the analytical cal-
culation procedure, we also develop a numerical
approach to solve the general power optimization
problem (Case V) based on equation (21). It is formu-
lated as follows

Figure 14. General solution of the optimal load as a function
of the drive frequency, the other parameters are taken from
Table 1.

Figure 15. General solution of the optimal frequency for an
arbitrary load resistance.
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max
v, t

P subject to v . 0, t . 0: ð76Þ

To deal with such a nonlinear optimization problem
with inequality constraints, the nonlinear Interior Point
and Sequential Quadratic Programming methods can be
used (Jorge Nocedal, 2006). The numerical solutions are
exactly the same as those obtained from analytical closed
form, showing that the optimal loads and frequencies are
either close to but not necessarily identical to Cases I and
II. The differences between them are strongly dependent
on system parameters such as beam geometry, parasitic
damping coefficient, and transduction factor.

Figure 17 shows two normalized numerical solutions
of the general power optimization problem addressed in
equation (76), note that v1=v0 = 1:05. Here, we denote
R0
L and R1

L as the loads expressed in equations (22) and
(24), respectively. With the particular prototype used
for these measurements, the optimal solutions of Case
V are not so different from those of Cases I and II.
Therefore, the obtained power outputs of three men-
tioned cases are considerably indistinguishable. This
indicates that for practical convenience, either v0 or v1

can be used to drive moderately coupled systems, while
the load is optimized to maximize the output power.

However, we mathematically point out an example
shown in Figure 18 where the maximum powers given
by equations (23) and (25) are more clearly different
from the solution of equation (76). Pseudo parameters
bs, tp�s, Ls, Gs are set for simulations by multiplying the
actual ones (in Table 1) with a chosen factor as seen in
Figure 18. The aim of this study is to realize that the
resonant/anti-resonant frequencies are not always the
optimal value, which depends on particular system

parameters. Finally, it should be noted that all theoreti-
cal results reported in this article can be independently
affirmed by dynamic simulations using SPICE
simulators.

While the particular beam used in these measurements
only generated a few mW, the power density was about
152 mW/cm3 at Bac = 300 mT, which is typical with the
use of piezoelectric technologies (Khaligh et al., 2010;
Moss et al., 2015) and is comparable to that of far-field
wireless powering systems (Popovic et al., 2013).
Furthermore, our simulations indicate that if we double
the magnet volume and halve the length of the piezoelec-
tric cantilever, the power density could be significantly
higher, with a factor of ;3:8 potential improvement.

Figure 16. Maximum transferred power as a function of the
driving frequency and the optimal load calculated by equation
(26). Solid dot: analytical solutions of the optimal frequencies
(equations (37) to (39)).

Figure 17. Numerical solutions of the optimal load and
frequency, which is independent on the applied B field.

Figure 18. An example indicates the difference when the
power obtained from Cases I and II are compared to that of Case V.
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