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This work concerns the steady-state dynamics of eccentric-rotor harvesters under the excitation of a
forced pendulum, selected as a simplified representation of the swinging motion of the human arm during
locomotion, to better understand their use for wrist-worn energy-harvesting applications. A linearized
model predicts the behavior of nonresonant eccentric-rotor devices well and provides insight into the
relationship between the rotor natural frequency and transducer-imposed electrical damping. Approximate
analytical solutions are obtained via perturbation methods that show that the eccentric rotor shares many
characteristics of a Duffing oscillator with softening spring nonlinearity. Finally, an interesting property of
the eccentric rotor’s dynamics, namely, invariance of power output to changes in forcing frequency and
amplitude over certain ranges of design parameters, is observed, forming the basis for a proposed resonant
eccentric-rotor harvester with a wideband power output response.
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I. INTRODUCTION

Eccentric rotors have maintained a position of particular
interest in the literature as a choice of inertial mass archi-
tecture for wrist-worn vibration energy-harvesting appli-
cations [1–7], and this harvester architecture even appears
in consumer products designed to scavenge energy from
the motion of the body [8,9]. These asymmetric rota-
tional inertial vibration energy harvesters exhibit several
desirable properties for a wrist-worn application, including
sensitivity to both rotational and translational motion [1],
a lack of hard displacement limits, and a watchlike form
factor.

In spite of its popularity as an alternative to more tradi-
tional translational harvester architectures for body-worn
applications, surprisingly little has been published on the
complex dynamics that these devices exhibit. Although
mathematical models have been proposed to describe these
devices, their use has been limited primarily to the assis-
tance of design by virtue of numerical investigation of the
effects of dimensioned design parameters on power out-
put. Much has been published on forced and parametrically
excited pendula in the mathematics and dynamics litera-
ture, with Refs. [10–13] representing only a minute sample
of such work, but no such publications exist that study the
nonlinear model of an eccentric-rotor harvester, such as
that derived in Ref. [14], for the purpose of better under-
standing the relationship between design parameters and
power output.

Some authors have suggested [1,2,15,16] that the
dynamic magnification that resonance can provide is either
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infeasible or impossible to achieve for applications on
the human body due to either the low-frequency high-
amplitude nature of human motion, device size constraints,
or both. It is perhaps due to the prevalence of this belief
that nonresonant designs dominate the eccentric-rotor har-
vesters proposed in the literature; this work also serves
as a point refutation for this assertion, as the dynamical
analysis presented herein suggests that a wideband reso-
nant eccentric-rotor harvester may indeed perform well in
a wrist-worn application.

This work begins by deriving a nondimensionalized
unsprung eccentric-rotor model, beginning with a dimen-
sioned nonlinear model that has been derived and empir-
ically validated elsewhere [14]. A dimensionless power
output equation and the input excitation functions of inter-
est are also derived. A linearized model is derived to obtain
a closed-form analytical power output equation, which is
useful for understanding how design parameters impact
device performance; this equation is contrasted with its
well-known translational energy-harvester counterpart and
is followed by a brief demonstration of the linear model’s
validity for nonresonant eccentric-rotor harvesters. The
limitations of the linear model are then examined, fol-
lowed by an analysis of the nonlinear dynamics using both
numerical and approximate analytical methods. The non-
linear analysis shows that the eccentric-rotor system shares
many features in common with a Duffing oscillator with
softening spring nonlinearity and that the primary reso-
nance is a particularly attractive point around which to
base a harvester design. The manuscript concludes with
a proposal for a resonant eccentric-rotor harvester for
wrist-worn application, which is compared with a nonres-
onant design via simulation.
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II. SYSTEM MODEL

A planar model that governs the dynamics of an
eccentric-rotor harvester has been derived and experimen-
tally corroborated in Ref. [14] and is given by

φ̈ + be + bm

ml2 + Ig
φ̇ + ml

ml2 + Ig
ay(t) cosφ

− ml
ml2 + Ig

ax(t) sinφ + k
ml2 + Ig

(
φ − π

2

)
+ θ̈ (t) = 0,

(1)

where φ is the displacement of the eccentric rotor relative
to the harvester housing coordinate frame; be and bm are
the electrical and mechanical linear viscous damping coef-
ficients, respectively; m is the mass of the rotor; l is the
distance from the rotating center to the rotor’s center of
gravity; Ig is the inertia of the rotor about its own center
of gravity; k is the torsional spring stiffness; ay(t) and ax(t)
are the input linear accelerations of the harvester housing
(which typically include gravitational acceleration) in the
y and x directions, respectively; θ̈ (t) is the input angular
acceleration of the housing, and overdots represent differ-
entiation with respect to time (Fig. 1). As noted in Ref.
[14], the model described by Eq. (1) may be most narrowly
interpreted as a model for low-frequency electromagnetic
rotational energy harvesters, although it may also be pre-
dictive for rotational energy harvesters with piezoelectric
and other transducer technologies.

The parameters be, m, l, Ig , and k in Eq. (1) are treated
as design variables, selected by the designer of the har-
vester. Although the designer may have some control over
the degree of loss, determined by bm, this parameter is
not treated as a design variable and is instead given. Also,
notably, the variables m, l, and Ig are not truly free param-
eters to be selected, as they are constrained by the choice

m

Ig

FIG. 1. Schematic of planar rotor model. Torsional spring not
shown.

(a) (b)

FIG. 2. Schematic of (a) the φ-coordinate frame used in
Eqs. (1) and (2), and (b) the γ -coordinate frame used in Eq. (3).

of rotor geometry, which must be physically realizable for
any practical implementation of a design.

Equation (1) is in monic form and is therefore well-
defined only when the total rotational inertia about the cen-
ter of rotation ml2 + Ig �= 0. Furthermore, to make Eq. (1)
physically meaningful, it is assumed that be, bm, m, l, Ig ,
and k are non-negative. As this paper is concerned with
the dynamics of the eccentric-rotor harvester without a tor-
sional spring, only the case of the unsprung rotor (k = 0)
is considered hereafter.

By defining the effective length of the eccentric mass as
leff = (ml2 + Ig)/(ml), and letting k = 0, Eq. (1) may be
rewritten more compactly as

φ̈ + be + bm

ml2 + Ig
φ̇ + ay(t)

leff
cosφ − ax(t)

leff
sinφ + θ̈ (t) = 0.

(2)

To ensure that leff is well-defined, assume m, l > 0. Finally,
Eq. (2) can be represented in an alternative coordinate
frame that is the focus of the remainder of this paper
(Fig. 2). Let γ = φ + π

/
2. Equation (2) becomes

γ̈ + be + bm

ml2 + Ig
γ̇ + ax(t)

leff
cos γ + ay(t)

leff
sin γ + θ̈ (t) = 0.

(3)

Let γ̇0(t) represent the time derivative of any solution
to Eq. (3). The focus of this paper is Eq. (3) subject to
periodic forcing and, particularly, the behavior of the time
derivative of solutions after much time has passed; in other
words, the steady-state behavior. With this focus in mind,
it is assumed that, after a long time, γ̇0(t) converges to a
periodic solution γ̇ (t); that is,

lim
ω
γ̇0(t) = γ̇ (t) = γ̇ (t + T),

where limω is the ω-limit set and T is a period. Importantly,
the assumption that steady state is achieved neglects the
possibility of long-term aperiodic or chaotic behavior. The
power output of an eccentric-rotor device modeled using
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FIG. 3. Schematic of the swing arm. Coordinate frames are
consistent with those of Fig. 1.

Eq. (3) is found by computing the power dissipated by
the “electrical damper,” a linear viscous rotational damper
with damping coefficient be. The average power dissipated
by this damper over a period of γ̇ , and therefore, the
steady-state power output, is

P = be

T

T
∫
0
γ̇ 2dt. (4)

A. Swing arm kinematics

In this study, the arm motion of humans during walk-
ing is modeled using the kinematics of a driven pendu-
lum, with the resultant excitation at the distal end of the
pendulum hereafter referred to as swing arm excitation
(Fig. 3). Although this represents a major simplification
in excitation for the purpose of analysis, actual human
arm swing during locomotion shares several characteris-
tics in common with the motion of a simple pendulum
[17,18], and therefore, makes for an appropriate first-order
approximation of the excitation of interest.

The tangential component of acceleration induced by the
swing arm motion is given by

at = d
dt
(larmθ̇ ) = larmθ̈ ,

where larm is the length of the swing arm, θ is the angu-
lar displacement of the swing arm, and overdots represent
differentiation with respect to time. Similarly, the nor-
mal component of acceleration induced by the swing arm
motion is given by

an = (larmθ̇ )
2

larm
= larmθ̇

2.

Rather than consider a downward gravitational force act-
ing on the eccentric mass directly, instead consider gravity
as an effective acceleration of the housing reference frame
(the x - y coordinate frame in Fig. 3)

The swing arm excitation is derived from the kinematics
of a harmonically driven pendulum. Consider

θ̈ (t) = −ω2θmax sinωt. (5)

The total acceleration in the x direction is then

xtotal = g sin θ + larmθ̈ ,

= g sin(θmax sinωt) + larm(−ω2θmax sinωt).

and the total acceleration in the y direction is

ytotal = g cos θ + larmθ̇
2,

= g cos(θmax sinωt) + larm(ωθmax cosωt)2.

It is assumed that g, larm, θmax, ω ≥ 0.

B. Approximation of kinematic functions

Assuming small angles for θmax allows for considerable
simplification of the expression for total acceleration in the
x direction:

xtotal ≈ θmax(g − larmω
2) sinωt.

Similarly, the small-angle approximation can reduce the
complexity of the expression for total acceleration in the
y direction:

ytotal ≈ g
(

1 − θ2
max sin2ωt

2

)
+ θ2

maxlarmω
2 cos2ωt,

≈ g
(

1 − θ2
max

4

)
+ θ2

maxlarmω
2

2
+ θ2

max

2

×
(g

2
+ larmω

2
)

cos 2ωt.

Denoting the average over one swing arm period 2π/ω as
〈·〉, let

ȳ = g
(

1 − θ2
max

4

)
+ θ2

maxlarmω
2

2
≈ 〈ytotal〉 .

Finally, let

x = θmax(larmω
2 − g),

y = θ2
max

(g
2

+ larmω
2
)

,

where x and y (not to be confused with the x- and y-basis
vectors for the housing coordinate frame) have dimensions
of acceleration. The approximate acceleration functions
ax(t) and ay(t) for swing arm excitation may now be
expressed compactly as

ax(t) ≈ −x sinωt, (6)

ay(t) ≈ ȳ + y cos 2ωt. (7)
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C. Kinematic analysis

It is clear from the definition of the amplitude of the x
acceleration, x = θmax(larmω

2 − g), that the total x acceler-
ation vanishes when

ω =
√

g
larm

,

which is the (linearized) natural frequency, sometimes
referred to as the natural pendular frequency, of the swing
arm. At slow walking speeds, fewer muscle contractions
occur at the shoulder to produce additional acceleration
beyond that which is due to gravity alone, which means
that the arm will tend to oscillate close to its natural pen-
dular frequency [18]; this presents a major challenge in
harvesting energy at the wrist during casual locomotion,
since the true x accelerations at the wrist are expected to
all but disappear when the arm oscillates near its natural
frequency.

D. Nondimensionalization

Consider Eq. (3) subject to the swing arm excitation
functions given by Eqs. (5), (6), and (7):

γ̈ + be + bm

ml2 + Ig
γ̇ + ω2

0

(
1 + y

ȳ

)
cos 2ωt sin γ

− ω2
0

x
ȳ

sinωt cos γ = ω2θmax sinωt. (8)

where ω0 = √
ȳ/leff is taken to be the natural frequency

of the rotor. To reduce the number of parameters under
consideration to only those that are essential, Eq. (8)
may be nondimensionalized by introducing the follow-
ing normalized variables: time τ = ω0t, electrical damp-
ing βe = be/[2ω0(ml2 + Ig)], mechanical damping βm =
bm/[2ω0(ml2 + Ig)], frequency ratio 	 = ω/ω0, y accel-
eration amplitude Ay = y/ȳ, and x acceleration amplitude
Ax = x/ȳ. Equation (8) may now be written as

γ ′′ + 2(βe + βm)γ
′ + (1 + Ay cos 2	τ)sin γ

− Ax sin	τ cos γ = 	2θmax sin	τ , (9)

where the prime denotes differentiation with respect to
dimensionless time τ .

It is desired to find a dimensionless analogue to the
dimensioned power of Eq. (4) that can be scaled back to
the dimensioned power by virtue of variables independent
of dimensionless design parameters. To derive such an
expression, it is useful to first define one last dimensionless
parameter, λ = l/leff. Notably, given the non-negativity
constraint on m, l, and Ig , and since λ = ml2/(ml2 + Ig),
λ is bounded from above by unity. Given that m, l > 0, the
parameter λ = 1 only when Ig = 0, which corresponds to

a rotor geometry described by a point mass m at a distance
l from the rotating center (i.e., the eccentric mass acts as
a simple pendulum). When 0 < λ < 1, the eccentric mass
acts as a compound pendulum. As λ becomes small, the
eccentric mass becomes less and less eccentric, losing all
eccentricity when λ = 0, at which point l = 0 and leff is no
longer well-defined. Consequentially, ω0 = √

ȳ/leff is also
not well-defined, and the scale used to derive Eq. (9) breaks
down. λ is, therefore, a geometric parameter describing the
distribution of mass of the rotor and lies on the interval
0 < λ ≤ 1.

Let the dimensionless upper bound on integration be
τ0 = ω0T. Beginning with Eq. (4),

P = be

T

T
∫
0
γ̇ 2dt = 2ω3

0(ml2 + Ig)βe

τ0

τ0∫
0
γ ′2dτ

= ȳ2m
ω

2βe	λ

τ0

τ0∫
0
γ ′2dτ . (10)

Equation (10) may be divided into dimensioned and
dimensionless components; analysis is greatly aided by
defining a dimensionless power �:

� = 2βe	λ

τ0

τ0∫
0
γ ′2dτ , (11)

such that the dimensioned power P = ȳ2m�/ω; stated
another way, the dimensioned power P is normalized by
ȳ2m/ω to give �, as in Ref. [19].

Thus, from Eq. (11), given the input excitation param-
eters (Ay , Ax, θmax) and the mechanical damping βm, the
dimensionless power,� = �(βe,	, λ), is determined over
a span of dimensionless time τ0 by the three dimensionless
design parameters βe, 	, and λ alone. The dimensionless
power is scaled to the dimensioned power P by ȳ2m/ω,
which is independent of the dimensionless design variables
for a fixed excitation. Thus, the problem of determining the
optimal m, l, Ig , and be given an input excitation and degree
of mechanical damping reduces to determining the βe, 	,
and λ that maximize �, with m acting as a scaling factor
for the dimensioned power output P.

E. Excitations

Several fixed excitations, treated as representative of
arm swing exhibited over a range of walking speeds [18],
are considered in this work (Table I). With larm = 0.5 m
[an approximation of the mean length from the acromion
(shoulder) to the ulnar styloid process (wrist) in humans
[17]], the excitations are fully defined when the swing
arm frequency ω and the swing arm amplitude θmax are
given. The dimensionless excitation parameters Ay and Ax
are computed using larm, ω, and θmax, according to their
definitions given in Sec. II D.
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TABLE I. List of excitations and associated parameter values
used in this work.

Excitation θmax (deg) ω (Hz) θmax (rad) Ax Ay

EX1 12.5 0.8 0.2182 0.0616 0.0418
EX2 12.5 1 0.2182 0.2131 0.0577
EX3 12.5 1.25 0.2182 0.4401 0.0816
EX4 25 0.8 0.4363 0.1168 0.1583
EX5 25 1 0.4363 0.3861 0.2090
EX6 25 1.25 0.4363 0.7474 0.2771

III. LINEARIZED SYSTEM

An analytical solution to Eq. (9) is desired to better
understand the relationship between the design variables,
input excitation, and power; however, due to the nonlinear-
ity and periodic coefficients present in Eq. (9), an analytical
solution is difficult, if not impossible, to obtain. Instead,
linearization may provide solutions valid over a particular
regime of operation. Linearization of Eq. (9) about γ =
0 yields the following linear inhomogeneous differential
equation:

γ ′′ + 2(βe + βm)γ
′ + (1 + Ay cos 2	τ)γ

= (Ax +	2θmax) sin	τ . (12)

Equation (12) is a forced damped Mathieu differential
equation for which, once again, an analytical solution is
difficult, if not impossible, to obtain. Since an analytical
solution is desired, consider instead the case where Ay is
negligibly small; this assumption is warranted for most of
the excitations listed in Table I. Under this assumption,
Eq. (12) becomes

γ ′′ + 2(βe + βm)γ
′ + γ = (Ax +	2θmax) sin	τ . (13)

Equation (13) is a linear inhomogeneous differential
equation with constant coefficients that is easily solvable.
As the focus of this work is on the steady-state behav-
ior of the eccentric rotor, only the particular solution to
Eq. (13) is required for analysis. To this end, the method
of undetermined coefficients is employed using the ansatz
γ (τ) = A cos	τ + B sin	τ and solving for A and B. Sub-
stitution of γ ′ in Eq. (11) with τ0 = ω0T = 2π/	 (one
swing arm cycle) gives the dimensionless power output

� = βe	
2λ

π

2π/	∫
0

γ ′2dτ = βe	
3λ(Ax +	2θmax)2

(	2 − 1)2 + [2(βe + βm)	]2
.

(14)

There are several similarities and differences of note
between Eq. (14) and the well-known power output
equation for translational vibration energy harvesters

(TVEH) [20,21], which is provided below for the conve-
nience of the reader:

PTVEH = A2m
ω

ζer3

(r2 − 1)2 + [2(ζe + ζm)r]2
, (15)

where A is the input acceleration amplitude; ω is the input
frequency; m is the seismic mass; ζe and ζm are the elec-
trical and mechanical damping ratios, respectively; and r
is the ratio of the input frequency to the harvester natural
frequency. The leftmost fraction in Eq. (15) is similar to
the dimensioned factor ȳ2m/ω used to scale Eq. (14), the
eccentric-rotor dimensionless power, back to the dimen-
sioned power. The rightmost fraction in Eq. (15) is dimen-
sionless and very similar in form to Eq. (14) and yields
several of the same results. For example, Eq. (14) exhibits
a resonance peak at 	 ≈ 1 for systems with sufficiently
low damping. Additionally, letting 	 = 1 in Eq. (14) and
finding the stationary point on d�/dβe gives the optimal
electrical damping ratio of βe = βm, which is similar to the
results found in Refs. [19,22].

However, there are also major differences between the
power output functions in the eccentric rotor and the trans-
lational case. First, there is an additional variable in the
eccentric-rotor case, λ, which is required, since a particu-
lar rotor natural frequency can be achieved in an infinite
number of geometric configurations for a given rotor mass
m; this is unlike the translational case, where a particular
natural frequency is uniquely determined by the choice of
linear spring stiffness once the seismic mass has been fixed.
Because λ is entirely independent of the other dimension-
less parameters on the interval 0 < λ ≤ 1, it is clear from
the form of Eq. (14) that the optimal λ is λ∗ = 1 (Fig. 4).

Second, the topology of the power function in the
eccentric-rotor case and that of the translational case are
different. Assuming a sufficiently low level of damping,
the eccentric-rotor case described by Eq. (14) is character-
ized by a sharp resonance peak, but power will also grow
without bound as βe, 	 → ∞, unlike in the analogous

0

0.5

11

10–3

1
 = 0.5

m
 = 0.01

e

0.5 0.5
0 0

FIG. 4. Dimensionless power as a function of the geometric
parameter λ and electrical damping ratio for excitation EX1.
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0
21

0.02

0.04

e

0.5 1

 = 0.1

m
 = 0.01

00

FIG. 5. Dimensionless power as a function of electrical damp-
ing ratio and frequency ratio for excitation EX1. Note the sharp
resonance peak at 	 ≈ 1 and continued increase in dimension-
less power for large βe and 	.

translational case; this is because a finite amount of mass
may be distributed so as to produce any arbitrary amount
of inertia about the center of rotation (Fig. 5). Without con-
straining the geometry to the practical bounds imposed by
a wrist-worn energy harvester, such solutions cannot be
avoided; notably, a volumetric constraint on the geometry
is insufficient to preclude such solutions. All excitations in
Table I produce a qualitatively similar plot for sufficiently
low levels of damping.

Finally, it should be noted that the interpretation of
the frequency ratio in the rotational case can be substan-
tially different from that of the translational case. Since the
input frequency ω cannot change without a corresponding
change in the linear accelerations (and thus, a change in,
for example, Ax), disparate values of 	 for a given exci-
tation, such as those plotted in Fig. 5, are achieved by
changing the harvester natural frequency, ω0, since 	 =
ω/ω0.

Figure 5 illuminates an interesting feature of the design
of eccentric-rotor harvesters: as the design moves away
from	 ≈ 1 (or, phrased differently, as the device becomes
more nonresonant), the electrical damping required for
optimal power output increases. Nonresonant harvesters,
therefore, require a relatively high degree of electrical
damping for acceptable performance.

A. A fixed geometry

The description of a rotor in terms of mass m, eccen-
tric length l, and inertia about its own center of gravity
Ig is very general; the rotor could be composed of many
complex solid bodies with varying density or a collection
infinitesimally small particles of mass; the rotor may even
be radially symmetric under such a description, and there-
fore, not eccentric at all, although the use of Eq. (2) and
its dimensionless counterpart Eq. (9) do prohibit this lim-
iting case. Partially as a consequence of this generality,

the power result described by Eq. (14) is difficult to inter-
pret with regard to practical design guidance. For example,
because large 	 can result in high power output, would it
be advisable to modify the geometry of a rotor to reduce
the natural frequency of oscillation (increase 	), if this
comes at the cost of reducing λ? A question such at this
may be answered by constraining the geometry under con-
sideration, which imposes relationships between the design
variables in Eq. (14), such as 	 and λ.

Consider the choice of a homogeneous cylindrical sec-
tor of material density ρ with angle α = 2ψ , radius r,
and height h for the geometry of an eccentric rotor. This
choice of geometry permits the expression of some design
variables in Eq. (14) in terms of ψ and r:

m = ρhψr2, λ = 8 sin2ψ

9ψ2 .

Additionally, let the total device volume V = πr2h; this
is the volume swept by the cylindrical sector as the rotor
coordinate γ moves through all points on its configura-
tion manifold. Using the result from linearization Eq. (14),
the power per unit volume for an eccentric rotor with
cylindrical sector geometry is

P
V

= ȳ2m
ωV

� = ȳ2ρ

ω

8βe	
3 sin2ψ(Ax +	2θmax)

2

9πψ{(	2 − 1)2 + [2(βe + βm)	]2}
.

(16)

For a given material density ρ and input excitation, max-
imizing mλ/V amounts to maximizing sin2 ψ/ψ , which
occurs at a sector angle of α = 2ψ ≈ 134◦. A plot of
power density versus frequency versus electrical damp-
ing ratio for a given excitation and mechanical damping
ratio then shares the topology of Eq. (14) for a given value
of λ, as in Fig. 5. Therefore, constraining the geometry
of an eccentric-rotor device does not appear to obviate
infinite power density solutions. If the sector angle is
fixed to maximize mλ/V, then the only means by which
the frequency may change for a given excitation, while
preserving the volume, is by modifying the thickness of
the rotor, which consequentially changes the rotor radius.
To maximize power density, one then either chooses a
rotor thickness and electrical damping ratio that allows
for resonance with the input excitation, or one reduces the
thickness indefinitely, while simultaneously increasing the
electrical damping, so that power grows without bound as
βe, 	 → ∞; this corresponds to a device of infinitesimal
thickness and infinite radius.

It is possible to express the frequency in terms of the
geometric design variables as well, so that the device
radius may be constrained:

	 = ω

√
3ψr

4ȳ sinψ
.
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FIG. 6. Contour plot of power density versus rotor sector
angle and electrical damping ratio under a particular swing arm
excitation.

Substitution of this result into Eq. (16) yields a very
complex expression for power density that warrants a
brief numerical investigation. Consider a tungsten (ρ =
19000 kg m−3) cylindrical sector eccentric-rotor device
with a volume of V = 1 cm3 and thickness 2 mm, requir-
ing a radius r ≈ 12.6 mm. Using a swing arm excitation
described by a swing arm length of larm = 0.5 m, swing fre-
quency of ω = 0.91 Hz, and a swing amplitude of θmax =
18◦, with a device mechanical damping ratio of βm =
0.0024, a plot of power versus sector angle versus damping
ratio may be generated (Fig. 6).

The power density surface presented in Fig. 6 now only
contains two peaks. The first larger peak corresponds to
resonance with the swing arm excitation. To achieve reso-
nance, the rotor requires a very large sector angle. The sec-
ond peak occurs at a sector angle of α ≈ 3.44 rad ≈ 197◦
and electrical damping ratio βe ≈ 2.08. This corresponds
to a nonresonant design, and the maximizer agrees with
optimization results for the nonlinear system of Eq. (1)
presented in Ref. [14] very closely.

IV. NONLINEAR DYNAMICAL ANALYSIS

To observe the correspondence between the power out-
put of the nonlinear system and its linearization, consider
a plot of dimensionless power � vs 	 for a fixed amount
of damping (βe = 0.02, βm = 0) and fixed λ = 1, in which
the linearized system power output Ref. (14) is evaluated,
and the nonlinear system of Eq. (9) is numerically solved
for use in Eq. (11) over a range of 	 values. The result,
using EX1 as the input excitation, is shown in Fig. 7.

In spite of the mild excitation, it is clear from Fig. 7 that
the linearization fails to predict the sharp onset of the pri-
mary resonance peak for the nonlinear system at 	 ≈ 0.8,
and consequently overpredicts the power output at the lin-
ear resonance of	 ≈ 1. The linearization does not capture
the leftward bending of the nonlinear primary resonance
at all. However, it appears that the linearized result agrees

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15 Linearized system Eq. (14)
Numerical solution of   Eqs. (9) and (11)

FIG. 7. Numerical versus analytical (linearization) results for
power versus frequency ratio using EX1 input.

closely with the nonlinear system, as long as 	 is far from
the primary resonance peak. Consider a similar plot to that
of Fig. 7, but using the much more vigorous EX5 as the
excitation input, shown in Fig. 8.

As seen in Fig. 8, the predictive power of the lineariza-
tion is much worse for the higher-energy EX5 excitation,
which is to be expected due to the small angle approx-
imation used to derive Eq. (14), and additional nonlin-
ear behavior is evident. A very wide high-power peak
now appears near 	 ≈ 2.5; several scattered higher-power
points also lie above this peak, which are not shown in
Fig. 8 to improve the scale of the plot. Additionally, a sharp
peak now clearly appears at	 ≈ 1/3, although it should be
noted that this peak is present for all excitations in Table I,
albeit at much smaller magnitudes under light excitation,
which is why this peak cannot be seen with the scale used
in Fig. 7. These additional peaks are referred to as sec-
ondary resonances. Additional nonlinear behavior can also
be observed in Fig. 8 (for example, near 	 ≈ 1.5), but are
much less consistent between excitations.

To develop a theory to explain the nonlinear behav-
ior exhibited by the eccentric-rotor system, approximate

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2 Linearized system Eq. (14)
Numerical solution of Eqs. (9) and (11)

FIG. 8. Numerical versus analytical (linearization) results for
power versus frequency ratio using EX5 input.
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solutions are sought using perturbation methods. All simu-
lations carried out for the remainder of this section assume
βe = 0.02, βm = 0, and λ = 1.

A. System approximation

Consider the following approximation to Eq. (9):

γ ′′ + 2(βe + βm)γ
′ + (1 + Ay cos 2	τ)

(
γ − 1

6
γ 3
)

− Ax sin	τ
(

1 − 1
2
γ 2
)

= 	2θmax sin	τ . (17)

Equation (17) is derived by taking the Taylor series of
the trigonometric functions in Eq. (9) about γ = 0 (the
Maclaurin series) and retaining the first two nonzero terms
in the series.

The approximate system of Eq. (17) will be used
to study Eq. (9) by employing perturbation methods.
Equation (17) may be rewritten as

γ ′′ + γ + ε
[
2(β̄e + β̄m)γ

′ + Āy cos 2	τγ

+ 1
2

Āx sin	τγ 2 − γ 3
]

+ O(ε2) = F sin	τ , (18)

where ε is a small, but finite, dimensionless quantity that
indicates the degree of the perturbation, the substitutions
βe = εβ̄e, βm = εβ̄m, Ay = εĀy , and Ax = εĀx are used to
track parameters that are considered small and F = Ax +
	2θmax. Given that the term O(ε2) = −ε2Āy cos 2	τγ 3,
it is clear that Eq. (17) is recovered from Eq. (18) when
ε = 1/6, which is considered small enough for satisfactory
results, similar to Ref. [[23], pp. 133–134].

One may be concerned that the forcing amplitude F,
which is not treated as small, contains Ax, which is treated
as small. However, consider the excitations of Table I;
for some of the excitations, such as EX1, Ax is certainly
small. For other excitations, such as EX3, EX5, or EX6,
Ax is arguably a large term; for this reason, it may per-
haps best be considered a borderline case. On the other
hand, Ax/2, which appears in a different role in a para-
metric forcing term in Eq. (17), is a much clearer case of
a small term. Additionally, when 	 is small, the 	2θmax
term in F is very small, which means Ax will dominate the
forcing amplitude; if this is ignored, the accuracy of the
unperturbed solution will suffer greatly, since it is already
clear that Eq. (13) accurately captures much of the dynam-
ics for small 	. For this reason, the somewhat unorthodox
assumption that Ax is large, but Ax/2 is not, is used in the
analysis whenever strong forcing is considered.

A uniform approximate solution to Eq. (18) is sought in
the form

γ (τ , ε) = γ0(T0, T1, T2, . . .)+ εγ1(T0, T1, T2, . . .)+ . . . ,
(19)

where one writes γ = γ (τ ; ε), with the parameter ε sep-
arated by a semicolon, since γ is a function of both the
independent variable τ and parameter ε. When ε = 0,
Eq. (18) becomes linear and its solution is denoted γ0.
Terms in the series in Eq. (19) of O(ε) and higher are cor-
rections to the terms that come before, called the correction
series, with the goal of additional terms yielding an asymp-
totic approximation to the solution of Eq. (18). When one
retains a single term in the correction series — that is,
terms up to O(ε) — then Eq. (19) is called a first-order
expansion. Because functional dependence of γ on τ and
ε is not disjoint, the solution approximation is dependent
on the combination of ετ terms, as well as on individ-
ual τ and ε, the solution may be written as γ (τ ; ε) =
γ̂ (τ , ετ , ε2τ , . . . ; ε) = γ̂ (T0, T1, T2, . . . ; ε), with T0 = τ ,
T1 = ετ , T2 = ε2τ , etc., representing different timescales,
since ε is a small parameter. First-order expansions are the
focus of this section, and such expansions may be obtained
without actually having to solve for γ1; only secular terms
in the expression for γ1 need be considered, which deter-
mine the dependence of γ0 on T1 [[24], pp. 122–126].
Thus, solutions in this section are in the form

γ (τ ; ε) = γ0(T0, T1)+ εγ1(T0, T1)+ . . . , (20)

where only the γ0 term, herein denoted simply as γ , needs
to be found, and O(ε) terms are neglected. The meth-
ods of variation of parameters and averaging are used to
approximate solutions to Eq. (17).

A final remark before the analysis: applying the method
of averaging to systems with both quadratic and cubic
nonlinearities can sometimes give erroneous results due
to interactions between approximation orders; such an
interaction is shown to occur between first- and second-
order approximations when a third-order approximation
is sought for a system with quadratic and cubic nonlin-
earities in Ref. [[24], pp. 168–169]. Although Eq. (18)
differs significantly from this example, and only a first-
order approximation is desired, the analysis is nevertheless
validated by comparing predictions made by the perturba-
tion solutions of Eq. (18) to those made using numerical
integration of Eq. (9).

B. Secondary resonances

To apply the method of averaging to the secondary res-
onances, the method of variation of parameters is first
applied. The solution of Eq. (18) with ε = 0 is

γ = a cos(τ + b) + 2� sin	τ , (21)

where the free-oscillation term is a cos(τ + b) with
a and b as variables, which are sometimes referred
to as parameters, and � = (Ax +	2θmax)/[2(1 −	2)].
Notably, Eq. (21) contains a term with a small divisor, �,
that becomes large as 	 → 1; the existence of this term
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is why the primary and secondary resonances are treated
separately in this analysis.

Substitution of Eq. (21) into Eq. (18), with subsequent
simplification, reveals that the dynamics of the parameters
of Eq. (21) are governed by

∂a
∂T1

= −(β̄e + β̄m)a +
(

Āxa2

16
− 3�a2

4

)
cos[(3 −	)τ + 3b] +

(
�3 − Āx�

2

4
+ Āy�

2

)
cos[(1 − 3	)τ + b] + OT,

a
∂b
∂T1

= −3�2a + Āx�a
2

− 3a3

8
+
(

− Āxa2

16
+ 3�a2

4

)
sin[(3 −	)τ + 3b]

+
(

−�3 + Āx�
2

4
− Āy�

2

)
sin[(1 − 3	)τ + b] +

(
3�2a − Āx�a

2
+ Āya

2

)
cos 2	τ + OT, (22)

where the substitution ∂/∂T0 = ε∂/∂T1 allows for elim-
ination of ε and OT refers to other terms that are
immaterial with regard to the method of averaging near
the secondary resonances, such as sin[(1 + 3	)τ + b] or
cos[(3 +	)τ + b], as these rapidly varying terms aver-
age to zero for the secondary resonances near 	 ≈ 3 and
	 ≈ 1/3. The terms in Eq. (22) are examined to demarcate
frequencies of interest for the analysis.

1. Case 1: � ≈ 3

Consideration of the slowly varying terms in Eq. (22),
equivalent to vector field averaging, allows for the deriva-
tion of the frequency response relating the amplitude of the
free-oscillation term to the frequency σ = (	− 3)/ε,

81a4 + 64

[
81�2

4
− 27Āx�

8
+ 9σ

4
− 5

2
(Āx − 12�)

2

]
a2

+ 16(18�2 − 3Āx�+ 2σ)2 + 64(β̄e + β̄e)
2 = 0,

(23)

which is quadratic in a2 and easily solved. For solu-
tions satisfying a2 ∈ R, the discriminant of the solution
satisfying Eq. (23) must be positive.

Equation (23) was derived by neglecting the a = 0 solu-
tion, which is a solution of particular interest, since this
implies that the free-oscillation term in Eq. (21) vanishes.
The stability of this solution is discussed in Sec. IV D.

The solution for the case of 	 ≈ 3 is given by

γ = a cos
(

1
3
	τ − 1

3
d
)

+ 2� sin	τ + O(ε), (24)

up to O(ε) with (dimensionless) time derivative

γ ′ = −1
3

a	 sin
(

1
3
	τ − 1

3
d
)

+ 2�	 cos	τ + O(ε),

(25)

where d = T1σ − 3b. Notably, the frequency of the free-
oscillation term is 	/3, or one-third of the dimensionless
frequency ratio; consequentially, such secondary reso-
nances are known as subharmonic resonances of order
one-third [[24], pp. 197–198]. Such resonances can exhibit
a very large response, in spite of being far from 	 ≈ 1.

2. Case 2: � ≈ 1/3

Consideration of the slowly varying terms in Eq. (22)
allows for the derivation of the frequency response relating
the amplitude of the free-oscillation term to the frequency
σ = (3	− 1)/ε,

9
64

a6 +
(

9�2

4
− 3Āx�

8
+ 3σ

4

)
a4

+
⎡
⎣
(

3�2 − Āx�

2
+ σ

)2

+ (β̄e + β̄m)
2

⎤
⎦ a2

− 2

(
�3 − Āx�

2

4
+ Āy�

2

)2

= 0, (26)

which is a cubic equation in a2. The roots of Eq. (26)
satisfying a2 ∈ R give the steady-state amplitude of the
free-oscillation for a given σ .

The solution for the case of 	 ≈ 1/3 is given by

γ = a cos(3	τ − d) + 2� sin	τ + O(ε), (27)
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up to O(ε) with time derivative

γ ′ = −3a	 sin(3	τ − d) + 2�	 cos	τ + O(ε). (28)

Notably, the frequency of the free-oscillation term is 3	, or
3 times the dimensionless frequency ratio; consequentially,
such secondary resonances are known as superharmonic
resonances of order three [[24], p. 202].

3. Case 3: � ≈ 0

Since τ appears explicitly in the governing equation,
it is unclear which timescale (T0 or T1) is appropriate to
describe a term such as cos 2	τ . If 	 ≈ 0, then cos 2	τ
is slowly varying. Let 	 = εσ to express the smallness
of 	 and write cos 2	τ = cos 2σετ = cos 2σT1. There
are no slowly varying terms in the a differential equation,
but there is cos 2	τ in the b differential equation, which
is slowly varying at 	 ≈ 0. The parameters are thus
governed by

∂a
∂T1

= −(β̄e + β̄m)a,

a
∂b
∂T1

=
(

3�2a − Āx�a
2

+ Āya
2

)
cos 2σT1.

(29)

From Eq. (29), it is clear that

a = a−(β̄e+β̄m)T1
0 ,

which indicates that the free-oscillation term in Eq. (21)
vanishes at steady state, leaving only the 2� sin	τ term;
this is the linearized solution presented in Sec. III, albeit
without damping.

4. Case 4: � away from 0, 1, 3, and 1/3

In this case, the only slowly varying terms in Eq. (22)
are the constant terms. Thus, the parameters are governed
by

∂a
∂T1

= −(β̄e + β̄m)a,

a
∂b
∂T1

= −3�2a + Āx�a
2

− 3a3

8
.

Hence, both parameters rapidly approach zero, as in the
	 ≈ 0 case, and Eq. (21) becomes the solution to an
undamped harmonically excited linear oscillator at steady
state. This explains why the solution to the linearized sys-
tem Eq. (13) presented in Sec. III, which also includes the
additional effect of damping, is predictive of the dynamics
of Eq. (9) far from any resonance peaks.

C. Primary resonance

Due to the small divisor term in Eq. (21), an alterna-
tive to Eq. (18) is proposed as the perturbed system for
analysis:

γ ′′ + γ + ε
[
2(β̄e + β̄m)γ

′ + Āy cos 2	τγ + 1
2

Āx sin	τγ 2

− γ 3 − (	2θ̄max + Āx)sin	τ
]

+ O(ε2) = 0, (30)

where the substitution θ̄max = εθmax is introduced to reflect
the smallness of the forcing term, which is valid for weak
excitation. The analysis then proceeds the same as that
with the secondary resonances. The solution of Eq. (30)
with ε = 0 is

γ = a cos(τ + b), (31)

where a and b again act as solution parameters with
dynamics to be determined. Notice that Eq. (31) no longer
contains the small divisor term. Substitution of Eq. (31)
into Eq. (30), with subsequent simplification, reveals that
the dynamics of the parameters of Eq. (31) are governed
by

∂a
∂T1

= −(β̄e + β̄m)a +
(

Āxa2

16
− 	2θ̄max

2
− Āx

2

)
cos d

− Āya
4

sin 2d,

a
∂d
∂T1

= aσ + 3a3

8
+
(

−3Āxa2

16
+ 	2θ̄max

2
+ Āx

2

)
sin d

− Āya
4

cos 2d. (32)

The form of Eq. (32) differs from the vector fields that gov-
ern the parameters of the secondary resonance solutions,
as well as from the system of differential equations that
describes the parameters for a first-order approximation of
the weakly forced Duffing oscillator [[24], pp. 205–208],
in two important ways. First, the amplitudes of the cos d
and sin d terms are not simply the inverse of each other;
this appears to be a consequence of the sin	τ paramet-
ric excitation term in Eq. (30). Second, there are sin 2d
and cos 2d terms in Eq. (32); this appears to be a con-
sequence of the cos 2	τ parametric excitation term in
Eq. (30). Due to the additional complexity, even solving
for the fixed points of Eq. (32) represents a challenge.
However, some information may be ascertained by exami-
nation. The steady-state values of a are given by ∂a/∂T1 =
0, yielding a quadratic in a. Similarly, letting a∂d/∂T1 = 0
gives a cubic equation in a. Treating Eq. (32) as a sys-
tem of polynomials in a with a finite number of solutions,
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FIG. 9. Phase portrait of the a-d plane for Eq. (32), which gov-
erns the primary resonance, under EX5 at 	 = 0.6. Two stable
spirals represent attractors for higher and lower amplitude solu-
tion branches, and a separatrix is formed by the unstable saddle
point.

then, by Bézout’s theorem, there are at most six solutions,
counting multiplicity. Equation (32) is also invariant under
the transformation d → d ± n2π , n ∈ Z. Thus, the steady-
state solution amplitude may attain up to six values, and the
interval of interest for d may be restricted to d ∈ [0, 2π).
For a visualization of the phase plane, see Fig. 9.

Since b = σT1 − d,	 = 1 − εσ , and T1 = ετ , the solu-
tion for the case of 	 ≈ 1 is given by

γ = a cos(	τ − d)+ O(ε), (33)

up to O(ε) with (dimensionless) time derivative

γ ′ = −a	 sin(	τ − d) + O(ε). (34)

D. Validation of analysis

The results presented in this section are derived from
Eqs. (17) and (30) — approximations of the original sys-
tem of interest, Eq. (9) — using approximate analytical
methods. To assess the validity of the perturbation solu-
tions (and the system approximations from which they are
derived) in predicting the behavior of the original system,
a brief comparison between numerical solutions of Eq. (9)

and the perturbation solutions of Eqs. (24), (27), and (33)
is presented in this section.

The perturbation solutions are validated in two ways.
First, since the amplitude of the free-oscillation terms is
the direct output of the averaging method, it is appropri-
ate to compare the amplitude of numerical solutions of
Eq. (9) to the amplitude of the analytical approximations of
Eqs. (24), (27), and (33). Since the solutions are not typ-
ically simple sinusoids, the amplitude is approximated in
all cases by computing half of the difference between the
maximum and minimum values attained by the solutions at
steady state. Comparisons of power output are used as the
second method for validating the analysis, which is accom-
plished by the use of the second component (velocity) of
the numerical solution to Eq. (9) and the perturbation solu-
tion derivatives of Eqs. (25), (28), and (34), in Eq. (11)
during steady state.

The numerical simulations are performed over a length
of 200 swing arm cycles of period 2π/	. Amplitude and
power values are computed over some final number of
swing arm cycles to be determined, as the solutions near
the end of the simulation timespan are presumed to rep-
resent a steady-state condition. The (smallest) period of
Eq. (27) is 6π/	, or three swing arm cycles; this rep-
resents the perturbation solution with the longest period,
and therefore, three swing arm cycles represents a fair
choice for the final number of cycles over which output
is computed. However, to account for the possibility of
a subharmonic at 	 ≈ 2, or any other unexpected non-
linear behavior, the final 30 swing arm cycles of the
simulation are instead selected to be representative of a
steady-state condition. Figures 7 and 8 are generated under
this assumption.

Due to the complexity of the equations, a numerical
approach is taken to find the fixed points of Eq. (32), the
primary resonance. For each value of 	 to be plotted, a
grid of 1024 initial guess points is formed in the region
−5 ≤ a ≤ 5, 0 < d ≤ 2π , that is used in a Trust-Region
Dogleg algorithm [25] to find up to six unique zeros of the
right-hand side of Eq. (32), which correspond to the fixed
points of interest. To assess the stability, the eigenvalues
λ1,2 of the Jacobian

J	≈1 =
⎡
⎣−(β̄e + β̄m)+ Āxa

8 cos d − Āy
4 sin d −

(
Āxa2

16 − 	2 θ̄max
2 − Āx

2

)
sin d − Āy a

2 cos 2d

3a
4 −

(
3Āx
16 − 	2 θ̄max

2a2 − Āx
2a2

)
sin d −

(
3Āxa

16 − 	2 θ̄max
2a − Āx

2a

)
cos d − Āy

2 sin 2d

⎤
⎦ , (35)

derived from Eq. (32) by treating the system as a vector-valued function with (a, d) as the input, are numerically evaluated
at each fixed point, with stable fixed points satisfying Re(λ1,2) < 0.

The amplitude of the free-oscillation term at steady state for the subharmonic response of Eq. (24) is found dire-
ctly by solving Eq. (23), retaining only solutions satisfying a ∈ R; d may then be found using Eq. (22) after averaging is
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performed. For the subharmonic fixed points, the Jacobian

J	≈3 =
⎡
⎣ β̄e + β̄m −

(
σ + 9�2 − 3Āx�

2

)
a
3 − 3a3

8

−
(
σ + 9�2 − 3Āx�

2

)
1
a + 9a

8 −3(β̄e + β̄m)

⎤
⎦ ,

derived from Eq. (22) after averaging is used to assess stability. To assess the stability of the a = 0 subharmonic solution,
treat the solution amplitude a as flow on the line, since the dynamics of the phase d are irrelevant if the amplitude of the
free-oscillation term is zero. Then

∂a
∂T1∂a

= −(β̄e + β̄m)+ 2a

(
Āx

16
− 3�

4

)
cos d.

Hence,

∂a
∂T1∂a

∣∣∣∣
a=0

= −(β̄e + β̄m),

which implies a = 0 is always stable for the subharmonic resonance.
Finally, the amplitude of the free-oscillation term at steady state for the superharmonic response of Eq. (27) is found

directly by solving Eq. (26), again retaining only solutions satisfying a ∈ R; d may then be found using Eq. (22) after
averaging is performed. For the superharmonic fixed points, the Jacobian

J
	≈ 1

3
=
⎡
⎣ −(β̄e + β̄m) −

(
σ + 3�2 − Āx�

2

)
a − 3a3

8(
σ + 3�2 − Āx�

2

)
1
a + 9a

8 −(β̄e + β̄m)

⎤
⎦ ,

derived from averaged Eq. (22) is used to assess stability.
Figure 10 presents the amplitude of the numerical solu-

tion of Eq. (9), as well as the perturbation solutions
to Eqs. (24), (27), and (33), versus frequency 	 for
EX5. The correspondence is generally acceptable, espe-
cially considering that the forcing is not particularly weak.
Notice the additional small resonance near 	 ≈ 1/4 that
has not been resolved by the first-order expansion. The
lack of numerical solution points that coincide with the

highest-amplitude branches in Fig. 10 should not be of
concern, as the leftward bending of the superharmonic and
primary resonances (sometimes referred to as the foldover
effect) produces a hysteresis in the response, in which
the path taken by the solution determines whether the
steady-state response lies on the higher or lower solution
branch. Since all numerical simulations begin with zero
initial conditions, it is unsurprising that points tend not
to lie on the uppermost branches. Some license has been
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FIG. 10. Comparison of numerical and perturbation approximations of solution amplitude of (a) superharmonic resonance, (b)
primary resonance, and (c) subharmonic resonance versus 	 for EX5.
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0 0.5 1 1.5 2 2.5 3
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0.15 Numerical solution of Eqs (9) and (11)
Perturbation solution (stable)
Perturbation solution (unstable)
Unperturbed (linear) solution

FIG. 11. Numerical versus analytical (linearization and per-
turbation) results for power versus frequency ratio using EX1
input.

taken in producing a comparison between numerical and
approximate solutions, as the range of frequencies over
which to plot the perturbation solution may be chosen
freely, although solution accuracy degrades far from the
solution’s corresponding resonance frequency.

Using the perturbation solutions to compute power,
Fig. 7 may now be reproduced to help explain the nonlin-
ear behavior under EX1, as shown in Fig. 11. Notice that
the perturbation solutions predict the flat superharmonic
response for EX1 and accurately predict the frequency
of the onset of the primary resonance from the lower-
amplitude solution branch. As the error in the approxi-
mate solutions propagates when power is computed using
Eq. (11), the fit is not expected to be as close in a power
versus frequency plot, such as Fig. 11.

An interesting feature of Fig. 11 is the existence of
the high-amplitude subharmonic branch with no coincid-
ing numerical solution points, which may seem concerning
with respect to validation. However, much like the high-
amplitude branches of the primary resonance, this can be
explained by the fact that all numerical solutions of Eq. (9)
are integrated using zero initial conditions in γ points that
always lie outside of the small region of attraction for the
high-amplitude branch of the subharmonic under EX1 in
numerical simulations (Fig. 12).

Finally, Fig. 8 may be reproduced, again overlaying
the power output of the perturbation solutions for EX5
(Fig. 13). The perturbation solutions again accurately cap-
ture the qualitative effect of the nonlinear resonance peaks
and are fairly predictive of the frequency at which the
lower solution branch of the primary resonance transitions
to the higher-amplitude branch.

The perturbation solutions of the system approximation
of Eq. (17) are therefore predictive of the dynamics of
the true eccentric-rotor model of Eq. (9). The steady-state
amplitudes of the perturbation solutions are in good agree-
ment with the amplitudes of the numerical solutions of
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FIG. 12. Phase portrait of the a-d plane for the subharmonic
resonance system, under EX1 at 	 = 2.5. Region of attrac-
tion for the high-amplitude solution is small, and all simulated
points corresponding to zero initial conditions approach a = 0 as
T1 → ∞.

Eq. (9). Power output is more difficult to predict with accu-
racy, however, due to the propagation of error when the
approximate solutions are used in Eq. (11), but qualitative
effects of the solutions are captured well.

E. Invariance of power output at primary resonance

Compare the steady-state power output at the sharp tran-
sition to primary resonance for EX1 (Fig. 11) and EX5
(Fig. 13); remarkably, in spite of the substantial differ-
ence in the strength of the two excitations, the steady-state
power output is nearly identical (� ≈ 0.04) in either case,
possibly due to the effect of saturation. An interest in how
the primary resonance peak behaves as the excitation is
changed leads to the numerical investigation presented in
Fig. 14, wherein the rotor model [Eq. (9)] is numerically
integrated for 	 values near the primary resonance and
power is again computed using Eq. (11). Recall that, for
a given excitation, a change in 	 amounts to a change in
the harvester’s natural frequency.

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2 Numerical solution of Eqs (9) and (11)
Perturbation solution (stable)
Perturbation solution (unstable)
Unperturbed (linear) solution

FIG. 13. Numerical versus analytical (linearization and per-
turbation) results for power versus frequency ratio using EX5
input.
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FIG. 14. Steady-state power output at primary resonance for
all excitations from Table I.

The results of the numerical investigation of the pri-
mary resonance suggest that an eccentric rotor designed to
exhibit a frequency ratio of 	 ≈ 0.8 under EX1 will con-
tinue to exhibit the high-amplitude response from swing
arm excitation that the primary resonance affords, even
with increasing input frequency (as this shifts	 rightward)
and swing arm amplitude.

F. Summary

Some of the primary results of the analysis presented in
this section are succinctly listed below:

(a) The eccentric-rotor model [Eq. (9)] exhibits behav-
ior characteristic of a Duffing oscillator with a softening
spring nonlinearity, in spite of differences in nonlinearities
and the addition of parametric excitation. This includes
secondary resonances at 	 ≈ 1/3 and 	 ≈ 3 and a pri-
mary resonance exhibiting the foldover effect.

(b) The peak at 	 ≈ 1/3 is a nonlinear superharmonic
resonance. Its magnitude relative to the primary resonance
is generally small and is strongly dependent on the forcing.

(c) The peak at	 ≈ 3 is a nonlinear subharmonic reso-
nance. Its magnitude is large and it extends over a wide
range of 	 values; however, the coexistence of high-
amplitude and low-amplitude solution branches and seem-
ingly small regions of attraction for the high-amplitude
branch under weak forcing suggest that consistent oper-
ation at the high-amplitude branch would be difficult to
achieve in practice.

(d) The amplitude of the primary resonance is highly
consistent under all excitations listed in Table I, and
the behavior of this peak provides an exploitable design
opportunity.

V. RESONANT ECCENTRIC-ROTOR DESIGN

Following observations of the behavior of the primary
resonance peak in Sec. IV, a resonant eccentric-rotor
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FIG. 15. Power versus swing arm frequency for two example
resonant and nonresonant eccentric-rotor designs.

harvester design is proposed and evaluated against a com-
parable nonresonant design.

Consider again, as in Sec. III, a homogeneous tung-
sten cylindrical sector rotor geometry with density ρ =
19000 kg m−3, angle α, radius r, height h, total device
volume πr2h = 1 cm−3, and thickness 2 mm, requiring a
radius r ≈ 12.6 mm. By prudent selection of the effective
length, leff, an eccentric-rotor design with a frequency ratio
	 ≈ 0.8 under EX1 may be obtained; an effective length
of leff ≈ 0.18 m is one such choice, which can be real-
ized with an angle α ≈ 5.97 rad, which is nearly a full
cylinder of tungsten. Whether such a resonant design will
maintain a high power output as the forcing parameters
Ax and Ay change with the input frequency can be ascer-
tained via numerical simulation of the dimensioned system
[Eq. (3)]. A choice of be = 1.3 × 10−6 N m s rad−1 for the
electrical damping coefficient is selected for the resonant
device. The optimized nonresonant device from Sec. III
(α ≈ 3.44 rad, be = 8.6 × 10−6 N m s rad−1) is selected
as a benchmark against which to gauge the performance of
the resonant device. Equation (3) is solved numerically for
each device over a period for 20 swing arm cycles, and the
final three swing arm periods are used as the time span t0 in
Eq. (4) over which power output is calculated. A mechani-
cal damping coefficient of bm = 8.6 × 10−6 N m s rad−1 is
used to represent loss in each device. The results of the
numerical simulations are presented in Fig. 15.

As observed in Fig. 15, the resonant design is capable of
producing a high power output over a large range of swing
arm frequencies. Only at the highest frequencies simulated
does the nonresonant design begin to outperform the res-
onant design. However, the nonresonant design benefits
tremendously from the high degree of electrical damp-
ing, which is nearly 7 times as high as the electrical
damping of the resonant device. To realize such a level
of damping in practice, some additional portion of the
device volume would need to be consumed by a trans-
ducer, which is volume that could otherwise be utilized
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FIG. 16. Power versus swing arm frequency for two exam-
ple resonant and nonresonant eccentric-rotor designs with equal
values of electrical damping.

by additional harvester mass. For a more fair compari-
son, another set of simulations using an electrical damp-
ing coefficient of be = 1.3 × 10−6 N m s rad−1 for both
devices is performed (Fig. 16).

As evidenced in Fig. 16, a resonant design is capable
of producing higher power over a wider range of swing
arm frequencies than that of a comparable nonresonant
device, when the device volumes and electrical damping
coefficients are matched.

It is also worth noting that the design of a rotor with
a wideband response at the primary resonance peak is
aided by a mild self-tuning phenomenon of the eccentric
rotor over the range of excitations considered in Table I.
Recall that the natural frequency ω0 = √

ȳ/leff, and that the
average y acceleration ȳ = g(1 − θ2

max/4)+ θ2
maxlarmω

2/2.
This means that ω0 = ω0(ω), which increases as the input
excitation frequency ω increases — that is, the harvester
resonance frequency tends to move with the input fre-
quency. This effect is observed and exploited in other
energy-harvesting devices with pendulum dynamics [26,
27].

VI. CONCLUSIONS

The dynamical analysis of an eccentric-rotor harvester
under swing arm excitation is presented. A linearized sys-
tem model predicts the behavior of nonresonant devices
well, if the natural frequency of the device is far from the
primary resonance or nonlinear secondary resonances. It
is shown that the eccentric-rotor harvester behaves very
similarly to a Duffing oscillator with softening spring
nonlinearity. The relatively small magnitude of the super-
harmonic resonance, and the coexistence of high- and
low-amplitude solution branches for the subharmonic reso-
nance, makes targeting these resonance peaks in a practical
design challenging. However, the behavior of the primary
resonance peak makes it ideal for harvesting, since power
output appears insensitive to changes in input excitations at

this resonance. A resonant eccentric harvester is proposed
to exploit this behavior and its performance compared to
a nonresonant design via simulation to demonstrate its
consistently high power output.

The entire analysis presented here assumes a steady-
state harvesting condition; for excitations derived from
human motion, this is likely to be a rare operating condi-
tion. Future work should incorporate transient analysis, as
this may have a significant impact on the design approach
for an eccentric-rotor harvester. Additionally, analysis of
the model subject to stochastic input vibrations could pro-
vide useful design insight, considering the input excitation
in practical applications is perhaps better characterized
by statistical properties than by deterministic harmonic
functions.
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APPENDIX

Derivation of the approximate analytical solutions pre-
sented in Sec. IV requires considerable mathematical
manipulation that has been largely omitted for brevity. This
appendix contains an augmented derivation of the primary
results of Sec. IV, presented in tutorial fashion, for the
convenience of the reader.

To apply the method of averaging to the secondary res-
onances, the method of variation of parameters is first
applied. The solution of Eq. (18) with ε = 0 is

γ = a cos(τ + b) + 2� sin	τ , (A1)

where the free-oscillation term is a cos(τ + b) with
a and b as variables, which are sometimes referred
to as parameters, and � = (Ax +	2θmax)/[2(1 −	2)].
Notably, Eq. (A1) contains a term with a small divisor, �,
that becomes large as 	 → 1; the existence of this term
is why the primary and secondary resonances are treated
separately in this analysis.

When ε �= 0, it is assumed that the solution is still
given by Eq. (A1), but with slowly time-varying param-
eters a(T1) and b(T1). The solution to Eq. (A1) may be
viewed as a transformation from γ (τ) to a(T1) and b(T1).
As a consequence, there is freedom in choosing an addi-
tional equation that imposes a condition on the unknown
functions. A convenient choice is taking the (dimension-
less) time derivative of Eq. (A1), while treating a and b as
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constants:

γ ′ = −a sin(τ + b) + 2�	 cos	τ . (A2)

However, when ε �= 0, the solution is still of the form of
Eq. (A1), subject to the constraint of Eq. (A2), but with
a = a(τ ) and b = b(τ ). Differentiation of Eq. (A1) in light
of this gives

γ ′ = −a sin(τ + b) + a′ cos(τ + b) − ab′ sin(τ + b)

+ 2�	 cos	τ . (A3)

Equation (A2) with Eq. (A3) implies

a′ cos(τ + b) − ab′ sin(τ + b) = 0. (A4)

Differentiating Eq. (A2) once more yields

γ ′′ = −a cos(τ + b) − a′ sin(τ + b) − ab′ cos(τ + b)

− 2�	2 sin	τ . (A5)

Substitution of Eqs. (A1), (A2), and (A5) into Eq. (18)
gives

−a cos(τ + b) − a′ sin(τ + b)
−ab′ cos(τ + b) − 2�	2 sin	τ
+a cos(τ + b) + 2� sin	τ

+ε

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2(β̄e + β̄m)[−a sin (τ + b) + 2�	 cos	τ ]

+Āy cos 2	τ [a cos(τ + b) + 2� sin	τ ]

+ 1
2 Āx sin	τ [a cos(τ + b) + 2� sin	τ ]2

−[a cos(τ + b) + 2� sin	τ ]3 − Āx sin	τ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= 	2θmax sin	τ .
(A6)

where interest in a first-order expansion allows for the
dropping of O(ε2); this is made more plain from substi-
tution of Eq. (20) into Eq. (18) with retention of terms up
to O(ε), although such a procedure requires more algebra.
As � = (Ax +	2θmax)/[2(1 −	2)], Eq. (A6) reduces to

a′ sin(τ + b) + ab′ cos(τ + b)

= ε

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2(β̄e + β̄m)[−a sin(τ + b) + 2�	 cos	τ ]

+Āy cos 2	τ [a cos(τ + b) + 2� sin	τ ]

+ 1
2 Āx sin	τ [a cos(τ + b) + 2� sin	τ ]2

−[a cos(τ + b) + 2� sin	τ ]3 − Āx sin	τ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

(A7)

Multiply Eq. (A4) by cos(τ + b) and Eq. (A7) by sin(τ +
b) and add the result to obtain

a′ = ε sin (τ + b)
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

2(β̄e + β̄m)[−a sin(τ + b) + 2�	 cos	τ ]

+Āy cos 2	τ [a cos(τ + b) + 2� sin	τ ]

+ 1
2 Āx sin	τ [a cos (τ + b) + 2� sin	τ ]2

−[a cos(τ + b) + 2� sin	τ ]3 − Āx sin	τ

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

.

(A8)

which defines the dynamics of the parameter a. The differ-
ential equation for b may be obtained similarly by multi-
plying Eq. (A4) by sin(τ + b) and Eq. (A7) by cos(τ + b)
and adding the result to obtain

ab′ = ε cos(τ + b)
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2(β̄e + β̄m)[−a sin(τ + b) + 2�	 cos	τ ]

+Āy cos 2	τ [a cos(τ + b) + 2� sin	τ ]

+ 1
2 Āx sin	τ [a cos(τ + b) + 2� sin	τ ]2

−[a cos(τ + b) + 2� sin	τ ]3 − Āx sin	τ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

(A9)

Expanding Eqs. (A8) and (A9) and grouping by the argu-
ment of the trigonometric functions gives

∂a
∂T1

= −(β̄e + β̄m)a

+
(

Āxa2

16
− 3�a2

4

)
cos[(3 −	)τ + 3b]

+
(
�3 − Āx�

2

4
+ Āy�

2

)
cos[(1 − 3	)τ + b]

+ OT,

a
∂b
∂T1

= −3�2a + Āx�a
2

− 3a3

8

+
(

− Āxa2

16
+ 3�a2

4

)
sin[(3 −	)τ + 3b]

+
(

−�3 + Āx�
2

4
− Āy�

2

)
sin[(1 − 3	)τ + b]

+
(

3�2a − Āx�a
2

+ Āya
2

)
cos 2	τ + OT,

(A10)

where the substitution ∂/∂T0 = ε∂/∂T1 allows for elim-
ination of ε and OT refers to other terms that are
immaterial with regard to the method of averaging near
the secondary resonances, such as sin[(1 + 3	)τ + b] or
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cos[(3 +	)τ + b], as these rapidly varying terms aver-
age to zero for the secondary resonances near 	 ≈ 3 and
	 ≈ 1/3. Special consideration is required at 	 ≈ 0.

The terms in Eq. (A10) are examined to demarcate
frequencies of interest for the analysis.

For the case of 	 ≈ 3, the slowly varying trigonometric
terms in Eq. (A10) are cos[(3 −	)τ + 3b] and sin[(3 −
	)τ + 3b]; retention of only slowly varying terms repre-
sents a simple procedure for averaging the vector field.
Thus, the solution parameters are governed by

∂a
∂T1

= −(β̄e + β̄m)a +
(

Āxa2

16
− 3�a2

4

)
cos[(3 −	)τ + 3b],

a
∂b
∂T1

= −3�2a + Āx�a
2

− 3a3

8
+
(

− Āxa2

16
+ 3�a2

4

)
sin[(3 −	)τ + 3b]. (A11)

Substitute 	 = 3 + εσ , where σ is referred to as a detuning parameter that is used to express the propinquity of 	 to
three, into Eq. (A11) to give

∂a
∂T1

= −(β̄e + β̄m)a +
(

Āxa2

16
− 3�a2

4

)
cos[T1σ − 3b],

a
∂b
∂T1

= −3�2a + Āx�a
2

− 3a3

8
+
(

Āxa2

16
− 3�a2

4

)
sin[T1σ − 3b]. (A12)

To make Eq. (A12) autonomous, introduce a new inde-
pendent variable

d = T1σ − 3b. (A13)

Hence,

∂d
∂T1

= σ − 3
∂b
∂T1

. (A14)

Substituting Eqs. (A13) and (A14) into Eq. (A12) and
simplifying yields

∂a
∂T1

= −(β̄e + β̄m)a + a2

(
Āx

16
− 3�

4

)
cos d,

a
∂d
∂T1

= σa + 9�2a − 3Āx�a
2

+ 9a3

8

− 3a2

(
Āx

16
− 3�

4

)
sin d, (A15)

which are now autonomous. It may appear that not much
progress has been made; the nonlinear system in Eq. (17)
has been replaced by another nonlinear system, Eq. (A15).
However, the parameters in Eq. (A15) approach station-
ary values with increasing T1, in which case the free-
oscillation term in Eq. (A1) achieves a periodic steady state

with fixed amplitude. Letting ∂a/∂T1 = ∂d/∂T1 = 0 then,
with some manipulation, d may be eliminated entirely,
leaving

81a4 + 64

[
81�2

4
− 27Āx�

8
+ 9σ

4
− 5

2
(Āx − 12�)

2

]
a2

+ 16(18�2 − 3Āx�+ 2σ)2 + 64(β̄e + β̄e)
2 = 0,

(A16)

which is quadratic in a2 and easily solved. Equation (A16)
is often referred to as a frequency response equation, and it
relates the amplitude of the free-oscillation term to the fre-
quency σ . For solutions satisfying a2 ∈ R, the discriminant
of the solution satisfying Eq. (A16) must be positive.

Equation (A16) is derived by neglecting the a = 0 solu-
tion, which is a solution of particular interest, since this
implies that the free-oscillation term in Eq. (21) vanishes.

The vector field that governs the subharmonic solution
parameters, Eq. (A15), under EX1 is visualized in Fig. 12.

Substitution of b = T1σ/3 − d/3 from Eq. (A13), along
with 	 = 3 + εσ and T1 = ετ , into Eq. (20) gives the
solution

γ = a cos
(

1
3
	τ − 1

3
d
)

+ 2� sin	τ + O(ε),
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up to O(ε) with (dimensionless) time derivative

γ ′ = −1
3

a	 sin
(

1
3
	τ − 1

3
d
)

+ 2�	 cos	τ + O(ε),

for the case of 	 ≈ 3.
For the case of 	 ≈ 1/

3, the slowly varying trigonometric terms in Eq. (A10) are cos[(1 − 3	)τ + b] and sin[(1 −
3	)τ + b]. Thus, the parameters are governed by

∂a
∂T1

= −(β̄e + β̄m)a +
(
�3 − Āx�

2

4
+ Āy�

2

)
cos[(1 − 3	)τ + b],

a
∂b
∂T1

= −3�2a + Āx�a
2

− 3a3

8
+
(

−�3 + Āx�
2

4
− Āy�

2

)
sin[(1 − 3	)τ + b]. (A17)

Similar to the case of	 ≈ 3, a detuning parameter σ is introduced, satisfying 3	 = 1 + εσ , as well as a new independent
parameter defined by d = σT1 − b, so that Eq. (A17) may be rewritten as an autonomous system in a and d:

∂a
∂T1

= −(β̄e + β̄m)a +
(
�3 − Āx�

2

4
+ Āy�

2

)
cos d,

a
∂d
∂T1

= σa + 3�2a − Āx�a
2

+ 3a3

8
−
(
�3 − Āx�

2

4
+ Āy�

2

)
sin d. (A18)

Finding the fixed points of Eq. (A18) with subsequent elimination of d yields

9
64

a6 +
(

9�2

4
− 3Āx�

8
+ 3σ

4

)
a4 +

⎡
⎣
(

3�2 − Āx�

2
+ σ

)2

+ (β̄e + β̄m)
2

⎤
⎦ a2

− 2

(
�3 − Āx�

2

4
+ Āy�

2

)2

= 0, (A19)

which is a cubic equation in a2. The roots of Eq. (A19) satisfying a2 ∈ R give the steady-state amplitude of the free-
oscillation for a given σ .

Since b = σT1 − d, 3	 = 1 + εσ , and T1 = ετ , the solution for the case of 	 ≈ 1/3 is given by

γ = a cos(3	τ − d) + 2� sin	τ + O(ε),

up to O(ε) with time derivative

γ ′ = −3a	 sin(3	τ − d) + 2�	 cos	τ + O(ε).

The analysis of the primary resonance proceeds as with that of the secondary resonances. The solution of Eq. (30) with
ε = 0 is

γ = a cos(τ + b), (A20)

where a and b again act as solution parameters. Notice that Eq. (A20) no longer contains the small divisor term. Taking
the (dimensionless) time derivative of Eq. (A20), while treating a and b as constants gives

γ ′ = −a sin(τ + b). (A21)
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However, when ε �= 0, the solution is still of the form Eq. (A20), subject to the constraint of Eq. (A21), but with a = a(τ )
and b = b(τ ). Differentiation of Eq. (A20) in light of this gives

γ ′ = −a sin(τ + b) + a′ cos(τ + b) − ab′ sin(τ + b). (A22)

Equation (A21) with Eq. (A22) implies

a′ cos(τ + b) − ab′ sin(τ + b) = 0. (A23)

Differentiating Eq. (A21) once more yields

γ ′′ = −a cos(τ + b) − a′ sin(τ + b) − ab′ cos(τ + b). (A24)

Substitution of Eqs. (A20), (A21), and (A24) into Eq. (30) with some simplification gives

a′ sin(τ + b) + ab′ cos(τ + b) = ε

⎡
⎢⎢⎣

−2a(β̄e + β̄m) sin(τ + b)
+aĀy cos 2	τ cos(τ + b)
+ 1

2 a2Āx sin	τ cos2(τ + b)
−a3 cos3(τ + b)− (	2θ̄max + Āx) sin	τ

⎤
⎥⎥⎦ , (A25)

where the O(ε2) term is again ignored. As with the secondary resonances, Eq. (A25) is used along with Eq. (A23) to solve
for a′

a′ = ε sin(τ + b)

⎡
⎣

−2a(β̄e + β̄m) sin(τ + b) + aĀy cos 2	τ cos(τ + b)
+ 1

2 a2Āx sin	τ cos2(τ + b)− a3 cos3(τ + b)
−(	2θ̄max + Āx) sin	τ

⎤
⎦ , (A26)

and ab′

ab′ = ε cos(τ + b)

⎡
⎢⎢⎣

−2a(β̄e + β̄m) sin(τ + b)
+aĀy cos 2	τ cos(τ + b)
+ 1

2 a2Āx sin	τ cos2(τ + b)
−a3 cos3(τ + b)− (	2θ̄max + Āx) sin	τ

⎤
⎥⎥⎦ . (A27)

Expanding Eqs. (A26) and (A27), eliminating ε, and noting that the slowly varying trigonometric terms are cos[(1 −
	)τ + b] and sin[(1 −	)τ + b], as well as sin[2(1 −	)τ + 2b] and cos[2(1 −	)τ + 2b], gives

∂a
∂T1

= −(β̄e + β̄m)a +
(

Āxa2

16
− 	2θ̄max

2
− Āx

2

)
cos[(1 −	)τ + b] + Āya

4
sin[2(1 −	)τ + 2b],

a
∂b
∂T1

= −3a3

8
+
(

−3Āxa2

16
+ 	2θ̄max

2
+ Āx

2

)
sin[(1 −	)τ + b] + Āya

4
cos[2(1 −	)τ + 2b]. (A28)

Finally, the detuning parameter σ is introduced, defined by	 = 1 + εσ , as well as a new independent parameter satisfying
d = σT1 − b, so that Eq, (A28) can be represented by the autonomous system

∂a
∂T1

= −(β̄e + β̄m)a +
(

Āxa2

16
− 	2θ̄max

2
− Āx

2

)
cos d − Āya

4
sin 2d,

a
∂d
∂T1

= aσ + 3a3

8
+
(

−3Āxa2

16
+ 	2θ̄max

2
+ Āx

2

)
sin d − Āya

4
cos 2d. (A29)
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