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ABSTRACT 

 

More than two million Americans suffer from myalgic encephalomyelitis/chronic 

fatigue syndrome (ME/CFS). While ME/CFS is still poorly understood, a recent upsurge 

in related research has identified the disease’s core symptoms, including post-exertional 

malaise (PEM) and unrefreshing sleep. The FDA has yet to approve any treatments for 

ME/CFS, partially due to a lack of validated efficacy endpoints. 

The central focus of this research is to develop ME/CFS efficacy endpoints using 

a non-invasive, inertial measurement-based approach. Accessible endpoints will provide 

a way to properly evaluate potential treatments for ME/CFS. In this research, an inertial 

measurement-based assessment of upright activity—referred to as UpTime—is validated. 

Furthermore, potential efficacy endpoints corresponding to unrefreshing sleep are 

evaluated using data from an Oura Ring. 

Using a Kalman filter, inertial measurement unit (IMU) data can be converted to 

optimized leg angle estimates. These angle estimates can then be converted to 

personalized daily UpTime scores.  

In a six-day, case-control study conducted at the Bateman Horne Center, UpTime 

and Oura Ring sleep data were collected from 15 subjects (five controls, five moderate-

level ME/CFS, and five severe-level ME/CFS). Analysis of UpTime data collected 

during this study indicates that each of these groups spends different proportions of their 

days upright and active. This result indicates that UpTime can accurately detect upright 
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posture that can be a surrogate for disease severity. UpTime is, therefore, a reliable 

endpoint for evaluating treatment efficacy. While the sleep data collected by the Oura 

Rings was interesting, our analysis did not yield any significant insights; this is most 

likely due to short data collection periods and insufficient sampling. 

Future studies with extended data collection periods are required to fully evaluate 

the value of the Oura Ring as a measurement tool for unrefreshing sleep. Together, Oura 

Rings and IMUs could provide a platform to more easily measure efficacy endpoints 

related to the core symptoms of ME/CFS. With the added perspective of large-scale 

studies, this sensor-based platform could provide a recovery path for individuals 

struggling with ME/CFS. 
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CHAPTER 1 

 

INTRODUCTION 

 

More than two million Americans suffer from myalgic encephalomyelitis/chronic 

fatigue syndrome (ME/CFS) [1], with an annual cost of $24 billion [2]. While our 

understanding of the etiology of ME/CFS is currently incomplete, studies have shown 

that the disease commonly occurs following viral infection and other acutely stressful 

events, impacting women more frequently than men at a rate of 6:1 [3]. A recent upsurge 

in ME/CFS research has led to an understanding of the disease’s core symptoms: (1) 

fatigue as a response to physical exertion, (2) post-exertional malaise (PEM), (3) 

unrefreshing sleep, (4) cognitive impairment, and (5) orthostatic intolerance (OI) [2]. 

Individuals suffering from ME/CFS experience drastic fluctuations of symptoms in terms 

of both intensity and variety, including numerous manifestations beyond core symptoms 

[4]. This variation makes assessing treatment efficacy particularly challenging, hence the 

disease’s poor test-retest reliability [5]. While the scientific community’s understanding 

of ME/CFS is continuously improving, no cure has been discovered. Patients often suffer 

from ME/CFS for years and sometimes even until death [6]. 

PEM causes individuals with ME/CFS to become disproportionately fatigued 

following mental or physical exertion. It is regarded as the distinctive symptom of 

ME/CFS [7]. The onset of PEM often lags behind the related exertion by multiple days 
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[8]. As a result of this symptom, individuals with ME/CFS generally suffer from a 

diminished exercise tolerance and can have difficulty performing mundane tasks such as 

routine cleaning, grocery shopping, and even showering.  

OI refers to the onset of symptoms which occur when standing upright; these 

symptoms can be alleviated by reclining. While the exact cause of OI remains unknown, 

Dr. van Campen’s research suggests that significantly lower blood volume is common 

among adults with ME/CFS who experience OI [9]. Sub-normal blood volume is likely 

the cause of the circulation-related issues many ME/CFS patients endure such as 

dizziness, headaches, weakness, and nausea. These are the most common symptoms of 

OI, all of which occur as a result of prolonged upright posture. 

As is typical for many who suffer from ME/CFS, PEM and OI are often coupled 

with unrefreshing sleep, leading to a housebound or even bedridden existence. ME/CFS 

patients commonly report a constant feeling of sleepiness, yet they often wake feeling 

unrefreshed despite the lack of surface-level sleep-related symptoms such as reduced 

overall sleep times, interrupted sleep, or increased sleep onset latency [10]. Dr. Jackson 

notes that the sleepiness commonly present among ME/CFS patients could simply be a 

result of an individual tendency to monitor sleep cycles closely. She also proposes that 

affected individuals may experience arousals during sleep that go undetected by current 

sleep scoring methods. Despite an insufficient understanding about why unrefreshing 

sleep symptom occurs, those with ME/CFS go on with their lives without the restorative 

benefits of sleep. 

The FDA has yet to approve any treatments—physical or pharmaceutical—for 

ME/CFS. To some extent, this lack of FDA-approved treatments is due to a lack of 
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validated efficacy endpoints [2]. In clinical trials, efficacy endpoints are used to reliably 

monitor the improvement of subjects as a result of a prescribed treatment. In the case of 

ME/CFS, some potential efficacy endpoints are (1) the maximum amount of time an 

individual can spend upright and active without triggering PEM and (2) the extent to 

which a patient feels refreshed following eight hours of uninterrupted sleep. In recent 

years, researchers have developed some ME/CFS efficacy endpoints using blood tests 

[11] and other invasive methods [12]. The central focus of this research is to develop 

efficacy endpoints using a completely non-invasive, inertial measurement-based 

approach. More accessible efficacy endpoints will provide a way to properly evaluate 

potential treatments for ME/CFS, especially if these endpoints correspond to the disease’s 

core symptoms. 

Researchers at the Bateman Horne Center (BHC) in Salt Lake City, Utah recently 

discovered an endpoint that shows promise as a reliable assessment of functional 

impairment among patients with ME/CFS. In studies conducted by the BHC, subjects 

were asked to fill out questionnaires, identifying how much time they spent upright 

during the previous 24 hours. Responses to these questionnaires indicate that patients 

diagnosed with severe ME/CFS spend less than five hours in an upright position. In 

comparison, those diagnosed with moderate ME/CFS spend between five and eight hours 

in an upright position [transcript in progress]. The BHC refers to this measurement of 

uprightness as hours of upright activity (HUA).  

Due to its strong correlation with PEM, HUA is a simple and clear way to gauge 

disease severity among individuals with ME/CFS [transcript in progress]. While HUA is 

a valuable efficacy endpoint, its deficiencies are significant. The primary weakness of 
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HUA is the inaccuracy of its current data collection method—questionnaire [13]; it is 

unreasonable to expect patients to accurately recall the amount of time they spent in an 

upright position the previous day. Another weakness of HUA is the low resolution 

offered by the measurement. “Hours” of upright activity is just that, a measurement 

recorded as whole integers in units of hours. Due to the inaccuracy and low resolution of 

data collected from HUA questionnaires, the only way to obtain a measurement of 

upright activity with a higher level of precision involves significant alterations to the 

current measurement process.  

In order to validate treatments for ME/CFS, an objective and accurate 

measurement is required. Currently, pharmaceutical companies and independent 

researchers struggle to receive FDA-approval for their treatments due to inaccurate 

measurements, such as HUA. Improving the resolution of BHC’s upright activity 

assessment will allow them (and others who use the improved process) to objectively and 

accurately measure the efficacy of their ME/CFS treatments.  

To address HUA’s shortcomings, an improved method for evaluating upright 

activity is proposed. Inertial measurement units (IMU) are commonly used to gauge 

activity level, e.g., Apple watches, Fitbits, pedometers. Many of these and other 

wearables use IMUs to detect workouts automatically [14]. However, these commercially 

available devices are calibrated to help healthy people achieve their fitness goals. Using 

these devices to monitor disease states is challenging because we are unable to tailor the 

higher-level algorithms used by these devices to more appropriately fit our unique 

application. No research has used IMUs to directly measure an efficacy endpoint for 

ME/CFS. Using an IMU, it is possible to continuously and accurately measure upright 
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activity, thus providing an effective method to assess disease severity among individuals 

with ME/CFS. By continuously measuring the uprightness of the lower legs, we can 

obtain a measurement referred to as UpTime. The advantages of this approach are two-

fold. The first advantage is that healthcare providers will no longer need to rely upon the 

accuracy of a patient’s memory to approximate upright activity. The second advantage 

comes from increasing the resolution of the measurement from hours—HUA—to 

seconds— UpTime. 

The primary goal of our research is to validate an improved method to assess 

upright activity. As a secondary goal, we aim to provide an efficacy endpoint 

corresponding to unrefreshing sleep. Experience has led researchers to believe that 

individuals with ME/CFS spend more time “awake” during sleeping hours and maintain 

consistently lower heart rate variability (HRV) than their healthy counterparts [10,15]. 

Furthermore, the most vital factors related to refreshing sleep are sleep continuity [16] 

and time spent in restorative—REM and deep—sleep cycles. To formally evaluate 

UpTime and these sleep-related measures as efficacy endpoints for ME/CFS disease 

severity, this thesis evaluates the results of a study wherein a healthy control group and 

an experimental group of ME/CFS patients were outfitted with Oura Rings and 

Shimmers—the IMU used for this study—for six consecutive days. During this six-day 

period, the Oura Rings tracked sleep patterns and recorded nightly HRV scores, while the 

Shimmers continuously measured UpTime. Statistical tests and other comparisons were 

used to evaluate the correlation between data collected by the Oura Ring and 

unrefreshing sleep. We review the results of this study later in this document.  

Our research simplifies symptom severity evaluation among patients with 
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ME/CFS. We expect that the Oura Ring and the Shimmers together will provide a 

platform to more easily measure efficacy endpoints related to the core symptoms of 

ME/CFS. As a result, assessing the long-term efficacy of treatments for patients with 

ME/CFS will significantly improve the evaluation of disease severity in terms of both 

ease and accuracy. These changes will enable the development of effective treatments, 

thus providing a path to recovery for individuals struggling with ME/CFS. 

In this thesis, we describe the development and testing of an IMU-based 

measurement of UpTime. Chapter 2 details how a Kalman filter is used to convert raw 

IMU data (recorded by the Shimmer) to angle estimates. In Chapter 3, the accuracy of 

these angle estimates is confirmed by comparison to a motion capture system. Chapter 4 

details the methods by which the Shimmers were prepared for clinical use. The BHC 

used both the prepared Shimmers and the Oura Rings to collect data in a small case-

control study. Chapters 5 and 6 detail the data processing and evaluation methods used to 

compare the study results—including both UpTime scores and Oura Ring measurements. 

We conclude this thesis with final comments about the value of these measurements as 

efficacy endpoints and recommend pathways for directing future work. 

 

 



 

 

 

 

CHAPTER 2 

 

IMPLEMENTING A SENSOR FUSION  

ALGORITHM FOR THE IMU 

 

2.1 Introduction 

As expressed in Chapter 1, the chief objective of this research is to determine 

UpTime by continuously measuring lower leg orientation. Calculating UpTime is a two-

step process. First, we measure lower leg angle by filtering IMU data, as described in this 

chapter. Second, we evaluate this measured angle to determine if the leg is upright. 

Distinguishing leg uprightness is crucial because it relates to the HUA questionnaire, 

which quantifies daily time spent in upright postures (see Figure 2.1). 

 

 
Figure 2.1. HUA survey. Postures are separated into two groups: (1) upright with 

feet on the floor and (2) not upright with feet off the floor. HUA is calculated by 

summing the time spent with feet on the floor—based on patient estimates.  
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Specifically, the HUA questionnaire seeks to identify how much time ME/CFS 

patients spend with their feet on the floor. Our goal is to replace the HUA questionnaire 

with an IMU-based measurement of upright activity called UpTime. We chose to place 

an IMU on each lower leg rather than the foot. Lower leg angles allow us to accurately 

assess whether the feet are on the floor (lower legs vertical) or off the floor (lower legs 

reclined/horizontal) while maximizing user comfort. By minimizing required sensors and 

maximizing user comfort, we hope that IMU-based UpTime will become a widely 

adopted efficacy endpoint for various treatments. User comfort during passive data 

collection is especially important over long periods of time; to fully evaluate the efficacy 

of ME/CFS interventions, clinics will need to track UpTime for several months. 

The Shimmer, a commercially available IMU, was selected for use in this 

research due to its small and lightweight design, data logging capacity, ample battery life, 

and previous use in related work [17,18]. Using an internal SD card, the Shimmer can 

simultaneously record accelerometer, gyroscope, and magnetometer data at a range of 

specified frequencies for extended periods. Accurate orientation estimations can be 

obtained using only the accelerometer and gyroscope (refer to Chapter 3 for verification 

of this claim). Excluding the Shimmer’s magnetometer from our research simplified the 

data filtering process and extended battery life, thereby lengthening the duration of 

possible data collection periods. 

Combining data from multiple sensors, otherwise known as sensor fusion, has 

been extensively reviewed in the literature [19]. Sensor fusion reduces measurement 

uncertainty by merging data from multiple sensors. This chapter describes the sensor 
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fusion algorithm we used to merge the Shimmer’s raw accelerometer and gyroscope data 

to determine lower leg angle, measured from vertical. 

 

2.2 Pre-Conditioning Data 

For this research, measuring lower leg angle requires measurements of roll (𝜙, 

angle relative to a global x-axis) and pitch (𝜃, angle relative to a global z-axis). Rotation 

about the y-axis, yaw (𝜓), offers no useful information about the lower leg’s angle 

relative to vertical; this can be seen in Figure 2.2.   

Raw acceleration data collected by the Shimmer has three components—

acceleration along the x-axis (𝑎𝑥), acceleration along the y-axis (𝑎𝑦), and acceleration 

along the z-axis (𝑎𝑧).  

 

 

Figure 2.2. Illustration of a 3-dimensional coordinate system with 

roll, pitch, and yaw.  
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These measurements are recorded in units of 
𝑚

𝑠2
. Raw gyroscope data is recorded with 

each component measuring the rate at which the Shimmer rotates around its body frame 

of reference, yielding one gyroscopic measurement about the x-axis (𝑝), one about the y-

axis (𝑞), and one about the z-axis (𝑟). Measurements taken by the Shimmer’s gyroscope 

are recorded in units of 
𝑑𝑒𝑔

𝑠
. 

Based on the accelerometer data alone, measurements of roll (𝜙𝐴𝑐𝑐) and pitch 

(𝜃𝐴𝑐𝑐) can be derived using trigonometry [20]. Note that the subscript "𝐴𝑐𝑐" indicates 

that these measurements are calculated using accelerometer data. These accelerometer-

based measurements are given in equations 2.1 and 2.2. 

 

    𝜙𝐴𝑐𝑐 = tan−1 (
𝑎𝑦

𝑎𝑥
2 + 𝑎𝑧

2)                                                    (2.1) 

 

    𝜃𝐴𝑐𝑐 = tan−1 (
−𝑎𝑥

𝑎𝑦
2  + 𝑎𝑧

2)                                                    (2.2) 

 

Equations 2.1 and 2.2 allow us to accurately find the direction of gravity while the 

IMU rotates in place. However, these angle measurements become inaccurate as soon as 

the device begins to move in space. Applied external linear accelerations cause 

movements (𝑎𝑙𝑖𝑛𝑒𝑎𝑟), which change the total acceleration (𝑎𝑡𝑜𝑡𝑎𝑙) read by the 

accelerometer, as shown in equation 2.3. 

 

   𝑎𝑡𝑜𝑡𝑎𝑙 = √𝑎𝑥
2 + 𝑎𝑦

2 + 𝑎𝑧
2 = 𝑔 + 𝑎𝑙𝑖𝑛𝑒𝑎𝑟                              (2.3) 
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 Linear accelerations likely to occur during our study included walking, running, 

and even driving a car. Passing accelerometer measurements through a low-pass filter 

will remove linear acceleration inputs, thus isolating gravity. Low-pass filtering also 

helps to clean up raw accelerometer measurements, as this sensor type tends to record 

noisy data. Unfortunately, low-pass filtering accelerometer data causes slight signal 

attenuation, especially during high-frequency motion such as walking—an effect that can 

be mitigated by fusing accelerometer data and gyroscope data. A critical strength of 

accelerometers is that their readings do not drift over time. As a result, they can be used 

to reliably evaluate orientation over long periods. 

 The Shimmer’s gyroscope measures angular velocity with respect to a frame of 

reference which is affixed to the device itself. Because we are interested in the device’s 

orientation relative to the earth, we convert the gyroscope’s body frame angle rates (𝑝, 𝑞, 

and 𝑟) to Euler angle rates (�̇�𝐺, �̇�𝐺 , and �̇�𝐺), which are measured with respect to a global 

or inertial frame of reference. This process is done using the following transformation: 

 

[

�̇�𝐺

�̇�𝐺

�̇�𝐺

] = [
1
0
0
  

0
cos(𝜙)

−sin(𝜙)
  

−sin(𝜃)

cos(𝜃)sin(𝜙)

cos(𝜃) cos(𝜙)
]

−1

[
𝑝
𝑞
𝑟
]                          (2.4) 

= [

𝑝 + 𝑞 sin(𝜙) tan(𝜃) + 𝑟 cos(𝜙) tan(𝜃)

𝑞 cos(𝜙) − 𝑟 sin(𝜙)

𝑞 sin(𝜙) cos(𝜃)⁄ + 𝑟 cos(𝜙) cos(𝜃)⁄
] 

 

 By integrating the transformed gyroscope data, we attain accurate angle 

measurements defining the device’s orientation in space (𝜙𝐺 , 𝜃𝐺 , and 𝜓𝐺). Unfortunately, 

integrating gyroscope data amplifies the effect of bias errors, causing drift over time [21]. 
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Due to this weakness, gyroscopes can be used to accurately measure orientation for short 

periods but are not suited for extended use. Unlike accelerometers, gyroscopes are not 

affected by linear acceleration and are therefore equally suited for quasi-static and 

dynamic applications. 

On their own, both the accelerometer and gyroscope measurements have 

weaknesses. Accelerometer data is consistent over extended periods but tends to be noisy 

and can confound linear acceleration and the effect of gravity. Gyroscope data has 

inherent bias errors that, when integrated, lead to drifting angle measurements. Despite 

these weaknesses, it is possible to produce a reliable estimation of orientation with 

reduced noise and without drift by combining data from both sensors—a process called 

sensor fusion. The goal of this process is to retain the strengths of each sensor while 

minimizing their flaws. 

 

2.3 Kalman Filtering 

Sensor fusion can be accomplished using several acceptable algorithms. Simple 

complimentary filters [22], nonlinear complementary filters [23], multiple model 

adaptive filters [24], and many other techniques [25] have been researched extensively. 

Of the numerous available sensor fusion techniques, we chose to use a Kalman filter due 

to the stochastic nature of our collected IMU data. Furthermore, the Kalman filter is 

computationally cheaper than other nonlinear filtering methods, and we anticipated the 

collected data to be on the order of multiple gigabytes. 

The Kalman filter, invented by Rudolf E. Kalman, is a sensor fusion method 

designed to minimize estimation error [26]. In our application, a Kalman filter 
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accomplished this error optimization by iteratively combining roll and pitch 

measurements provided by the Shimmer’s accelerometer and gyroscope (see equations 

2.1, 2.2, and 2.4). Based on parameters set during its construction, the Kalman filter 

provides angle estimates which are more accurate than measurements provided by either 

sensor.  

 

2.3.1 Defining the State-Space Form of the System 

A Kalman filter is a type of optimal state estimator which minimizes the quadratic 

cost function [27]. The Kalman filter used in this research follows the structure provided 

in Philip Salmony’s “Course on IMU Attitude Estimation” [28]. Our variables of 

interest—estimated roll (�̂�𝑘), estimated pitch (𝜃𝑘), and their respective biases 

(𝑏�̂�𝑘
 𝑎𝑛𝑑 𝑏�̂�𝑘

)—make up the estimated state vector (�̂�𝑘), as shown in equation 2.5.  

 

     �̂�𝑘 =

[
 
 
 
 
�̂�𝑘

𝑏�̂�𝑘

𝜃𝑘

𝑏�̂�𝑘 ]
 
 
 
 

                                                          (2.5) 

 

Note that the subscript 𝑘 is used because all measurements and estimates are discrete, 

rather than continuous. Furthermore, we use a “hat” over a variable to denote an estimate.  

Equations 2.6 and 2.7 show the estimated state vector (�̂�𝑘) and estimated output 

vector (�̂�𝑘), which form the discrete state-space model of our system: 

 

     �̂�𝑘 = 𝐴�̂�𝑘−1 + 𝐵𝒖𝑘                                           (2.6) 
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     �̂�𝑘 = 𝐶�̂�𝑘                                                           (2.7) 

 

In equation 2.6, the subscript 𝑘 − 1 indicates values corresponding to the previous time-

step. This equation also marks the first time we see the input vector, 𝒖𝑘, which consists 

of our gyroscope’s transformed angle rates, as shown in equation 2.8. 

 

    𝒖𝑘 = [
�̇�𝐺𝑘

�̇�𝐺𝑘

]                                                 (2.8) 

 

Similarly, we built our measurement vector (𝒚𝑘)—which is different from the estimated 

output vector (�̂�𝑘)—using our accelerometer’s measurements of roll (𝜙𝐴𝑐𝑐𝑘
) and pitch 

(𝜃𝐴𝑐𝑐𝑘
) (see equation 2.9). 

 

     𝒚𝑘 = [
𝜙𝐴𝑐𝑐𝑘

𝜃𝐴𝑐𝑐𝑘

]                                                         (2.9) 

 

The final pieces of the system’s discrete state-space model are the 𝐴, 𝐵, and 𝐶 matrices. 

These matrices—which define the relationships between estimated state vector, estimated 

input vector, and estimated output vector—are shown in equations 2.10, 2.11, and 2.12. 

 

     𝐴 = [

1
0
0
0

 

−𝑑𝑡
1
0
0

 

0
0
1
0

 

0
0

−𝑑𝑡
1

]                                           (2.10) 
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     𝐵 = [
𝑑𝑡
0

 
0
0
 
0
𝑑𝑡

 
0
0
]                                                 (2.11) 

     𝐶 = [
1
0
 
0
0
 
0
1
 
0
0
]                                                     (2.12) 

 

2.3.2 The Kalman Filter Equations 

It is necessary to model the system in state-space form, as these relationships are 

used to implement a Kalman filter. The discrete Kalman filter equation combines 

equations 2.6 and 2.7 to form equation 2.10. 

 

   �̂�𝑘 = 𝐴�̂�𝑘−1 + 𝐵𝒖𝑘 + 𝐾𝑘(𝒚𝑘 − 𝐶(𝐴�̂�𝑘−1 + 𝐵𝒖𝑘))               (2.10) 

 

In this equation, the Kalman Gain, 𝐾, adjusts to compensate for differences between the 

inputs (angles measured by the gyroscope) and the previous predicted states. Estimates of 

the current states, �̂�𝑘, are predicted using the state estimates from the previous timestep, 

�̂�𝑘−1, and the current inputs, 𝒖𝑘 (see equation 2.11). This equation is the first of five 

specific Kalman filter equations (KFE) needed to implement a Kalman filter algorithm. 

 

KFE #1:    �̂�𝑘
− = 𝐴�̂�𝑘−1 + 𝐵𝒖𝑘                                          (2.11) 

 

Each of these five KFEs falls into one of two categories: (1) prediction and (2) 

update. As shown in equation 2.11, KFE #1 falls into the prediction category because it 

uses estimates from the previous timestep to predict estimates for the current timestep. 

Predicted state estimates are calculated without using the current measurements and are 

therefore referred to as a priori, literally “something that can be known without prior 
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experience.” A priori estimates are denoted using a superscript minus—e.g., �̂�𝑘
−. 

During the prediction step, we also define the a priori estimate of the error 

covariance matrix (𝑃𝑘
−). The formula for this estimate is KFE #2 and is shown in 

equation 2.12. 

 

KFE #2:    𝑃𝑘
− = 𝐴𝑃𝑘−1𝐴

𝑇 + 𝑄                                          (2.12) 

 

The error covariance matrix, 𝑃, is initially set by us (as shown in equation 2.13) but is 

modified during each iteration through the Kalman filter. 

 

     𝑃 = [

1
 0
0
0

  

0
1
0
0

 

0
 0
1
0

  

0
0 
0
1

]                                           (2.13) 

 

The diagonal values of this matrix indicate how confident we are that the previous state 

values are correct. When setting the initial values, lower numbers indicate greater 

certainty in the initial guess. As the Kalman filter iterates through each discrete set of 

measurements, it determines the confidence level of the previous timestep’s state 

estimates and adjusts the covariance matrix accordingly. 

Covariance matrices are used as tuning parameters for the Kalman filter, which 

allow us to estimate lower leg angles more accurately. Our Kalman filter has three 

covariance matrices: (1) an error covariance, 𝑃, (2) a process noise covariance, 𝑄, and (3) 

a measurement noise covariance, 𝑅. In all three cases, we cannot know specifics about 

the error or noise involved in the Kalman filtering process. Fortunately, we can assume 
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that these sources of measurement error are zero-mean Gaussians, i.e., they are normally 

distributed with their means centered at zero. This assumption allows us to account for 

each source of error simply by defining a corresponding covariance matrix. 

The process noise covariance, 𝑄, (seen previously in equation 2.13) is associated 

with the noise in the states. Corresponding to the number of variables in our state vector, 

𝑄 is a 4 × 4 diagonal matrix. The diagonal values of this matrix are set depending on 

how sure we are about the model dynamics, where smaller values indicate a more 

accurate model. Because we are using the Kalman filter generally, rather than modeling a 

specific system, we set the diagonal values of 𝑄 to a low value of 0.01 (see equation 

2.14). 

 

     𝑄 = [

. 01
0
0
0

 

0
. 01
0
0

 

0
0

. 01
0

 

0
0
0

. 01

]                                     (2.14) 

 

The measurement noise covariance, 𝑅, is a 2 × 2 diagonal matrix corresponding 

to the inherent noise levels of sensors used. In this matrix, the diagonal values are set 

depending on the noise of the sensors used in the system, with larger values indicating 

greater sensor noise. The Shimmer’s low-noise accelerometer is a KXRB5-2042 device 

from Kionix. The Shimmer’s gyroscope is the MPU-9150 chip from Invensense. Based 

on the datasheets for both sensors, we chose to set the diagonal values of 𝑅 to 10—a 

relatively high value (see equation 2.15). 
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     𝑅 = [

10
0
0
0

 

0
10
0
0

 

0
0
10
0

 

0
0
0
10

]                                           (2.15) 

 

The second step of Kalman filtering is the update step. The first thing to update is 

the Kalman Gain for the current timestep (𝐾𝑘) using the a priori error covariance (𝑃𝑘
−), 

the output matrix (𝐶), and the measurement noise covariance (𝑅). This is KFE #3 

(shown in equation 2.16). 

 

KFE #3:    𝐾𝑘 =
𝑃𝑘

−𝐶𝑇

𝐶𝑃𝑘
−𝐶𝑇+𝑅

                                                    (2.16) 

 

Now that the requisite predictions have been made, we can compare the a priori 

estimated states against the current sensor measurements. KFE #4 does exactly this by 

simplifying equation 2.10 using the a priori state estimate. This simplification is shown in 

equation 2.17. 

 

KFE #4:    �̂�𝑘 = �̂�𝑘
− + 𝐾𝑘(𝒚𝑘 − 𝐶�̂�𝑘

−)                                            (2.17) 

 

KFE #5 updates the error covariance, 𝑃𝑘, (as shown in equation 2.18) for use in the 

next iteration of the Kalman filter; this is the final KFE. 

 

KFE #5:       𝑃𝑘 = (𝐼 − 𝐾𝑘𝐶)𝑃𝑘
−                                            (2.18) 

 

By cycling through the prediction and update KFEs, the Kalman filter will 
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compute optimal, unbiased estimates of lower leg angles with minimal variance. This 

process is repeated until an accurate, Kalman-filtered angle estimate has been calculated 

for each discrete set of IMU measurements. For clarity, a summary of all five KFEs is 

presented in Table 2.1. 

The Kalman filter computes optimized roll and pitch estimates for each set of 

discrete sensor measurements. Each pair of roll and pitch estimates is then combined into 

an estimate of lower leg angle measured from vertical (∠𝐿𝑒𝑔). This process is done using 

quaternions. 

 

Table 2.1. Kalman filter equations, separated 

into two categories: (1) predict and (2) update. 

Predict 

 

KFE #1:      �̂�𝑘
− = 𝐴�̂�𝑘−1 + 𝐵𝒖𝑘 

 

 

KFE #2:      𝑃𝑘
− = 𝐴𝑃𝑘−1𝐴

𝑇 + 𝑄 
 

Update 

 

KFE #3:      �̂�𝑘 = �̂�𝑘
− + 𝐾𝑘(𝒚𝑘 − 𝐶�̂�𝑘

−) 
 
 

KFE #4:      𝐾𝑘 =
𝑃𝑘

−𝐶𝑇

𝐶𝑃𝑘
−𝐶𝑇+𝑅

 

 
 

KFE #5:      𝑃𝑘 = (𝐼 − 𝐾𝑘𝐶)𝑃𝑘
− 

 

A quaternion is a vector of four elements (𝑞𝑟, 𝑞𝑖, 𝑞𝑗, and 𝑞𝑘) used to define a 

rotation within a three-dimensional coordinate system. Together, elements 𝑞𝑖, 𝑞𝑗, and 𝑞𝑘 
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form a vector, and 𝑞𝑟 defines how much to rotate about that vector. The equations for this 

rotation are included below (equations 2.19-2.23). 

 

     𝑞𝑟 = cos (
�̂�

2
) cos (

�̂�

2
)                                         (2.19) 

 

     𝑞𝑖 = sin (
�̂�

2
) cos (

�̂�

2
)                                         (2.20) 

 

     𝑞𝑗 = cos (
�̂�

2
) sin (

�̂�

2
)                                         (2.21) 

 

     𝑞𝑘 = −sin (
�̂�

2
) sin (

�̂�

2
)                                         (2.22) 

 

     ∠𝐿𝑒𝑔 = tan−1 (
√𝑞𝑖

2+𝑞𝑗
2+𝑞𝑘

2

𝑞𝑟
)                                 (2.23) 

  

2.4 Conclusion 

In summary, the Kalman filter is an iterative process that combines a given state-

space model with recorded data to optimally estimate a value that cannot be directly 

measured. In our case, the value that cannot be directly measured is lower leg angle.  

This Kalman filter was implemented using MATLAB 2019a (Appendix F). With 

the Kalman filter fully defined, the next step was to collect sample Shimmer data and 

evaluate the accuracy of the filtered estimates. This evaluation is detailed in the next 

chapter. 
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CHAPTER 3 

 

SHIMMER ACCURACY CONFIRMATION STUDY 

 

3.1 Introduction 

This research validates a surrogate measure of upright activity for clinical use. 

According to recent research conducted by the Bateman Horne Center (BHC) in Salt 

Lake City, Utah, daily upright activity corresponds to ME/CFS disease severity 

[transcript in progress]. In their research, the BHC gauged upright activity using lower 

leg orientation. However, the BHC collected data using questionnaires, which is a crude 

method to approximate actual leg orientation. Replacing the questionnaires with Shimmer 

devices will greatly improve the accuracy of leg orientation data. For this reason, we 

chose to outfit individuals with a pair of Shimmers, one on each lower leg, to obtain a 

continuous measurement of lower limb orientation. This IMU-based approach allows for 

a much higher resolution measurement of upright activity because the Shimmer can 

record data at frequencies over 2 kHz.  

Human motion is limited to ultra-low frequencies—less than 10 Hz [29]. To 

protect our signal from aliasing, we needed a sample rate at least twice this limit [30]. 

Therefore, a sample rate of at least 20 Hz was required; however, collecting data above 

this minimum sample rate would improve filter performance. For this application, we 

selected a frequency of 30 Hz to maximize battery life while maintaining the detail of the 
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data collected by the Shimmers. 

In Chapter 2, the function of a Kalman filter was explained in detail. Because we 

cannot measure limb orientation directly, we used a Kalman filter to indirectly obtain an 

optimal estimation instead. For this reason, it was necessary to confirm the accuracy of 

our data collection and filtering methods. This accuracy confirmation study used a 

VICON nine-camera motion capture system as the baseline to  

evaluate the accuracy of the Kalman filtered IMU data. 

 

3.2 Methods 

3.2.1 Operating Specifications—Shimmer Device 

As discussed in Chapter 2, the Kalman filter employed in this research estimates 

orientation using three-dimensional accelerometer and magnetometer data as inputs. For 

the accuracy confirmation study, researchers configured the Shimmers using Shimmer 

Sensing’s ConsensysBasic software package—build v1.6.0. All Shimmers were 

programmed to record data at a sample rate of 30 Hz. The Shimmer’s low-noise 

accelerometer was set to an output range of ± 2 g, and the gyroscope was set to an output 

range of ± 500 deg/sec.  

 

3.2.2 Operating Specifications—VICON Motion Capture System 

A nine-camera VICON motion capture system, consisting of seven VICON 

MXF40 cameras and two VICON MXF20 cameras, was used to collect the baseline data 

in this accuracy confirmation study (see Figure 3.1). This VICON system is located in the 

Large Robotics Lab at the University of Utah (Building MEK, Room 0112). Optical  



23 

 

 

 

Figure 3.1. Image of VICON motion capture system used in this accuracy 

confirmation study. The VICON system included seven VICON MXF40 cameras and 

two VICON MXF20 cameras, each running at 60 Hz. The capture volume was 

approximately 8’ x 10’ x 2’. 

 

motion capture uses an array of infrared-emitting cameras to locate retroreflective 

markers in three-dimensional space. For this study, we used VICON’s software package, 

NEXUS 2.9.2, to operate the VICON motion capture system. Each of the nine cameras 

recorded motion capture data at a sample rate of 60 Hz.  

 

3.2.3 Markerset—Truncated Rizzoli Lower Body Protocol 

When tracking optical motion data, the precise placement of retroreflective 

markers is critical. Each body segment requires at least three markers to properly collect 

all six degrees of freedom—three rotational and three translational. While the underlying 

principles of marker placement are relatively simple, using standard markersets is 

common in the field of motion capture. Over time, these standard markersets have 
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amassed a proven history of use in established motion capture labs and are 

preprogrammed into many motion capture software packages.  

The Movement Analysis Laboratory in the Rizzoli Orthopedics Institute has 

developed multiple standard markerset protocols for tracking various segments of the 

body. Because our accuracy confirmation study was based solely around the 

biomechanics of the lower leg, we chose to use a truncated form of the Rizzoli Lower 

Body Protocol (26) [31]. This markerset was designed to track the motion of the lower 

body from the pelvis down. In order to fit our needs more closely, we removed all 

markers unrelated to the tracking of the lower leg and foot segments. This simplification 

produced the markerset shown in Figure 3.2. 

 

 

 

 

Figure 3.2. Diagram showing the truncated form of the Rizzoli Lower Body Protocol 

Markers. See OptiTrack’s website for marker descriptions [31]. 
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3.2.4 Accuracy Confirmation Study Description 

3.2.4.1 Prescribed Positions and Motions 

With the VICON Motion Capture system and Shimmers prepared, we developed a 

simple choreography, or sequence of postures, for the subjects to follow while collecting 

data. The IMU-based system validated in this research was and will continue to be used 

for diverse groups of people. With this purpose in mind, we chose to gather data from a 

small group of subjects with varying body shapes and gait cycles. Three subjects 

participated in the study; their characteristics are listed in Table 3.1. 

One at a time, each subject was instructed to take a seated position with both 

lower legs vertical. Next, we began collecting data on both systems—VICON and 

Shimmer. The subject then stomped both feet against the ground to provide a reference 

point, which was used during post-processing to align the IMU and motion capture data. 

Finally, the subject followed a series of postures (shown in Figure 3.3), holding each for 

five seconds. This sequence of postures was explicitly developed to push the limits of the 

Shimmer’s motion capture abilities and encompass the full range of lower leg angles that 

would be seen in a week-long study, from vertical to horizontal. 

 

Table 3.1 Subject characteristics for accuracy confirmation study—all are healthy. 

Subject 
Age 

(years) 
Gender 

Height 
(meters) 

Weight 
(kg) 

1 51 Female 1.72 65.8 

2 27 Male 1.80 72.6 

3 26 Female 1.62 49.0 
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Figure 3.3. Sequence of postures imitated by subjects during accuracy confirmation 

study. 

 

3.2.5 Calculation of UpTime 

 The goal of this accuracy confirmation study was to compare measurements 

obtained from the Shimmer and VICON systems to assess the accuracy of the former. To 

assess UpTime using the data collected, it was necessary to first calculate lower limb 

angle. As described in Chapter 2, the Kalman filter was used to calculate lower limb 

angle from the Shimmer data. To calculate lower limb angle from the VICON data, each 

choreographed trial was exported as a comma-separated values (CSV) file. Two markers 

per leg, LHF/RHF and LLM/RLM (see Figure 3.2), were used as the endpoints of two 

virtual lines. The angles of these virtual lines were then determined using basic principles 

of trigonometry. When comparing VICON angles to Shimmer angles, root mean squared 
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error (RMSE) calculations showed that the two measurements differed by an average of 

0.53 degrees for all three subjects (see Figure 3.4). RMSE was 0.80 degrees for subject 1, 

0.13 for subject 2, 0.66 for subject 3. Most of this error occurred during the walking 

sequence from 30 to 40 seconds. Having collected angle data from both systems—

VICON and Shimmer—we proceeded to calculate UpTime using MATLAB 2019a 

software.  

A custom MATLAB function was created to calculate UpTime. This UpTime 

function uses the angle data from both legs to calculate the amount of time spent in an 

upright position. This function requires three inputs: (1) angle vector for the left leg in  

 

 

Figure 3.4. Comparison of angular data from VICON and Shimmers for one 

subject. Most of the error is due to dynamic activity, between 30 and 40 

seconds, when the subject was walking. A lower leg angle below the critical 

angle (indicated by a horizontal line) means the subject was upright. Likewise, 

a lower leg angle above the critical angle means the subject was not upright. 
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units of degrees, (2) angle vector for the right leg in units of degrees, and the (3) sample 

rate of both angle vectors—sample rate must be the same for both legs—in units of Hz. 

Within the body of the function, the critical angle is defined in units of degrees. The 

critical angle is used to determine if the lower leg is upright or not upright (see Figure 

3.5). If the measured angle of the lower leg is less than the critical angle, then the leg is 

classified as upright. If the measured angle of the lower leg is greater than the critical 

angle, then the leg is classified as not upright. 

Due to a lack of pre-existing data, it was difficult to choose a specific critical 

angle that accurately differentiates all angles as either upright or not upright. For this 

reason, our UpTime function permits the user to define the critical angle as any angle 

between zero and 90 degrees from vertical. We chose a critical angle of 39 degrees for 

 

 

Figure 3.5. The angle of each lower leg is compared to the critical angle, 𝜃𝑐, to 

determine uprightness. In this figure, the lower leg would be classified as upright 

because the leg angle is less than the critical angle. If the lower leg was horizontal, 

then the angle of the lower leg would exceed the critical angle and would, therefore, 

be classified as not upright. 
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this study. This decision was made based on data collected by researchers at the BHC. 

Their data indicates that individuals with ME/CFS find relief from symptoms by 

elevating the lower legs. Based on this knowledge, we knew that a critical angle close to 

45 degrees would allow us to identify times when diseased individuals were seeking 

relief. Our rationale for selecting a critical angle of 39 degrees is provided in Chapter 6 of 

this thesis. 

At each point in time, both Shimmers—one per leg—record data from their 

accelerometers and gyroscopes. For each Shimmer, the recorded data for each trial period 

is an N x 8 matrix, with each row corresponding to a specific point in time when the row 

of data was recorded. The eight columns correspond to (1-2) the date and time the data 

was recorded, (3-5) three axes of accelerometer data, and (6-8) three axes of gyroscope 

data. Each matrix is then converted into a single vector of lower leg angle data, with each 

value corresponding to a row in the Shimmer matrix. Finally, the UpTime function takes 

these vectors of leg angle data and classifies each leg as upright or not upright at each 

recorded point in time. Based on this classification, an integer is assigned to each value in 

the UpTime vector. If neither leg is upright, an integer of zero is assigned. If only one leg 

is upright, an integer of one is assigned. If both legs are upright, an integer of two is 

assigned. After both leg angle vectors are evaluated, all values in the UpTime vector are 

combined to form one total measurement of UpTime—which is expressed as a 

percentage of the day spent with the legs in an upright orientation. Both the total UpTime 

measurement and the UpTime vector are outputs of the UpTime function (see Figure 

3.6).  
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Figure 3.6. Flow chart illustration of the UpTime function. This example shows how 

two leg angle vectors are used to create the UpTime vector and total measurement of 

UpTime. Four leg angles have been arbitrarily created to illustrate all possible 

combinations of leg angles—both legs upright, one leg upright (left or right), and 

neither leg upright.  

 

3.3 Results & Discussion 

The UpTime function was used to calculate a value of UpTime corresponding to 

both the VICON system and the Shimmer. When reviewing the results for all three 

subjects (Table 3.2), we found that the Shimmer has an average error of 1.88% when 

compared to the VICON system, which represented 100% accurate measurements. 
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Table 3.2 UpTime Data for both the VICON system and the Shimmer. UpTime has been 

evaluated for one-minute of data in this table. Note that the final study will evaluate 

UpTime for multiple 24-hour periods. 

System 
UpTime (%) 

Subject 1 Subject 2 Subject 3 

VICON 29.61 31.47 24.79 

Shimmer 29.74 30.67 25.45 

Error 2.54% 0.42% 2.67% 

 

This error is likely due to the method used to construct the Kalman filter. Rather than 

modeling our IMU-based system specifically, we built the Kalman filter using a general 

approach and then used this filter to estimate orientation angles. However, this small 

amount of error was deemed negligible for our application. Subject-to-subject differences 

in measurement accuracy were also acceptably low. 

Most of the error between the Shimmer and VICON angles occurs during the 

walking phase (see Figure 3.4). During this period of dynamic motion, the IMU 

accurately estimates angles above 20 degrees. Due to the way UpTime is calculated, we 

expect the IMU to accurately measure UpTime even when the collected data involves a 

higher proportion of active movements. Switching from one posture to another will be 

much less frequent in unchoreographed data collection, especially for individuals with 

ME/CFS. For this reason, we expect that the Shimmer will be even more accurate in our 

study than in this accuracy confirmation study. 
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3.4 Conclusion 

In this chapter, the MATLAB function used to calculate UpTime was described in 

detail. For the same choreographed trials, calculations of UpTime for both VICON and 

Shimmer were compared, with VICON representing 100% accurate measurements. We 

found a 1.88% error between the Shimmer and that VICON baseline, indicating that the 

Shimmer is sufficiently accurate to measure ME/CFS patient uprightness. In the end, 

switching from a questionnaire-based assessment of HUA to an IMU-based measurement 

of UpTime will offer a dramatic improvement in terms of both accuracy and resolution.  
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CHAPTER 4 

 

PREPARING THE SHIMMER & OURA RING FOR CLINICAL USE 

 

4.1 Introduction 

Previous chapters have discussed and verified a method that converts IMU data to 

angles. Later, we will describe how this angle estimation was used in a case-control study 

to measure upright activity (or UpTime). Before this study could occur, we needed to 

prepare the Shimmer for prolonged use in diverse settings. 

In this chapter, we describe the methods and procedures followed to outfit study 

participants with the Shimmers. The main concerns we address in this chapter are 

waterproofing the Shimmer and designing the user’s experience with the Shimmer. At the 

end of this chapter, we explain the Shimmer attachment procedure in detail. 

 

4.2 Shimmer – User Experience 

In our study, we asked participants to wear two Shimmers—one per leg—for a 

full week. With this extended period of continuous use in mind, it was essential to 

sufficiently prepare the devices so that the user had as little discomfort as possible. We 

wanted to outfit each subject with the devices and then let them live their lives almost 

entirely uninhibited.  

While the compact form factor of the Shimmer met our need for a small and 
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lightweight design, we anticipated that sleeping with the Shimmer attached to their lower 

leg could cause mild discomfort; this concern was especially important due to the 

increased sensitivity of our experimental group. To minimize the discomfort of sleeping 

with the Shimmer, we chose to place the device on the lateral side of the lower leg, 

approximately two inches above the malleolus. Nesting the Shimmer in the natural curve 

of the lower leg minimized pressure on the device during sleep, thus maximizing 

comfort. Apart from minimal discomfort during sleep, the only other issue we identified 

in terms of user experience was accidental switching or pressing of the ON/OFF Switch 

and/or User Button (see Figure 4.1).  

Pressing the User Button starts and stops data collection. This button is pressed 

accordingly to initiate and terminate data collection for each trial. We 3D printed covers 

 

 

Figure 4.1. Shimmer unit with ON/OFF Switch and User Button labeled. 

Side view (left) and top view (right). 
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to be placed over the top of the Shimmers before they were attached to a subject’s lower 

leg. These covers prevent study participants from accidentally pressing the User Button 

during data collection. The design of this cover minimizes added volume and weight; the 

cover adds an extra 3 grams of weight and 2 millimeters of height to the Shimmer (see 

Figure 4.2). 

 

4.3 Shimmer – Waterproofing 

We anticipated that many participants would appreciate being able to shower 

without having to remove or worry about the device. This concern was especially 

relevant due to the extended and continuous nature of each trial. To improve user 

comfort, we developed two-layers of waterproofing for the Shimmer that would allow 

users to shower during their trial. Figures in section 4.4 may help the reader to visualize 

the solutions described below. 

 

 

Figure 4.2. (a) Rendering of the cover placed over the Shimmer during data collection. 

(b) Shimmer with the 3D printed cover attached. 
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A detached finger of a nitrile glove, referred to hereafter as a nitrile sleeve, 

provided the first layer of waterproofing. We chose to use nitrile gloves due to their 

waterproof and puncture-resistant nature. Furthermore, we wanted to avoid potential 

allergic reactions to latex gloves, the most common alternative to nitrile gloves. We 

placed each Shimmer inside of a nitrile sleeve along with a desiccant packet. The 

desiccant packet absorbs any moisture existing within the Shimmer before placement 

inside of the nitrile sleeve. With the Shimmer and desiccant packet nested inside, we then 

sealed the nitrile sleeve shut with electrical tape, which was chosen for its elastic nature. 

This containment method protects the Shimmer from all possible sources of moisture, 

including moisture within the device, sweat from the user’s skin, and outside sources of 

moisture. 

Tegaderm film dressings provided the second layer of waterproofing. Tegaderm is 

a transparent, waterproof, and flexible adhesive which is most commonly used to protect 

IV insertion sites. For our purposes, Tegaderm provided a way to comfortably and 

securely attach the Shimmer to each participant’s leg. This approach provided a natural 

way to deter participants from removing or otherwise adjusting the Shimmer. At the same 

time, the Tegaderm also provided a redundant layer of water protection. This second 

layer of waterproofing protects against external sources of water but does nothing to 

protect the Shimmer from the wearer’s sweat, unlike the nitrile sleeve.  

 

4.4 Shimmer – Attachment Procedure 

Before the start of each trial in the study, the Shimmers were properly configured 

and given a trial name using Shimmer Sensing’s ConsensysBasic software package—
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build v1.6.0.  

After the devices were configured, we placed each one back side down on a level 

surface (see Figure 4.3(a)). Next, we initiated data collection by pressing the user button 

once. To conceal the flashing lights, a potential source of discomfort for the experimental 

group, we covered the LEDs with tape (see Figure 4.3(b)). Next, we attached the 3D 

printed cover to the Shimmer to protect the user button (see Figure 4.3(c)). Then we 

placed the Shimmer in a nitrile sleeve along with a desiccant packet (see Figures 4.3(d) 

and 4.3(e) for orientation). We used electrical tape to seal the Shimmer within the nitrile 

sleeve and wrapped the entire package with gauze to allow air to circulate between the 

device and the lower leg (see Figures 4.3(f) and 4.3(g)). 

Using an alcohol wipe, we disinfected the surface of the lower leg (see Figure 

4.3(i)). Next, we attached the nitrile sleeve package to the lower leg using a Tegaderm 

film dressing. To prevent the Tegaderm from wrinkling and sticking to itself, we placed 

the Tegaderm (sticky side up) on a flat surface. We then carefully pressed the gauze-

wrapped nitrile sleeve package onto the center of the sticky side of the Tegaderm 

dressing (see Figure 4.3(j)). Next, we lifted the Tegaderm, with nitrile sleeve package 

attached, from the table and attached everything to the lower leg (see Figures 4.3(j) and 

4.3(k)). Finally, the Tegaderm newly attached nitrile sleeve package was loosely wrapped 

in Coban for an additional layer of support (see Figure 4.3(l)). 

 

4.5 Conclusion 

In conclusion, it was important to develop a way to permit wearers of the 

Shimmer to shower during data collection. This waterproofing procedure relies on two  
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Figure 4.3. Shimmer attachment protocol. (a) Shimmer unit; (b) LEDs covered with 

tape to block light leakage; (c) 3D printed cover attached; (d) desiccant packet in 

place; (e) Shimmer, cover, and desiccant packet secured inside of the nitrile sleeve; 

(f) nitrile sleeve sealed shut with electrical tape; (g) entire package wrapped in 

gauze; (h) gauze wrapped IMU package attached to Tegaderm; (i) preparing the 

surface of the leg for device attachment using an alcohol wipe; (j) IMU package 

attached to lower leg with Tegaderm film; (k) outer layer of Tegaderm removed; 

and (h) Coban wrap applied to lower leg to provide extra support to IMU package. 
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layers of waterproofing: (1) the nitrile sleeve and (2) the Tegaderm film dressing. A 

procedure to outfit individuals with the Shimmer was then described. This attachment 

protocol was used for each participant in the study discussed in Chapter 5. 
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CHAPTER 5 

 

RAW IMU DATA ANALYSIS METHODS 

 

5.1 Introduction 

This chapter explains the process of converting measurements collected by the 

IMU devices (Shimmers, in our case) to daily UpTime scores. Each daily UpTime score 

is reported as a percentage and represents the portion of the day spent upright and active; 

this measurement is called “UpTime.” We use the orientation of the lower legs—

calculated using a Kalman filter—to determine UpTime. Prior research conducted by the 

BHC has identified that UpTime varies depending on ME/CFS disease severity. To 

further investigate this claim, we planned and executed a clinical study evaluating 

UpTimes for diseased and healthy groups. Once validated, UpTime may be used as an 

endpoint to evaluate ME/CFS treatment efficacy. 

 

5.2 Case-Control Study Design 

For the planned Case-Control study, a total of fifteen subjects were outfitted with 

a Shimmer on each ankle and an Oura Ring on a finger of their choice. Each subject wore 

these devices for six days—starting on a Monday and ending on a Saturday. The fifteen 

subjects were divided into groups based on disease level—five subjects without ME/CFS 

(the controls), five subjects with moderate-level ME/CFS, and five subjects with severe-
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level ME/CFS. Due to limited Shimmer availability, all subjects were staggered—with 

one or two subjects participating each week—from September 30, 2019 to December 19, 

2019.  

Each subject’s six-day data collection period was broken into two “phases.” For 

all subjects, phase one began on a Monday—when the subject traveled to the BHC to be 

outfitted with the devices—and ended 72 hours later on the following Thursday. Phase 

two began on Thursday (where phase one ended), lasting another 72 hours before ending 

on Sunday. The study was broken into two phases for multiple reasons. Primarily, the 

Shimmer batteries lasted approximately 72 hours using the specifications chosen for this 

study. Secondly, the data collected during phase one was meant to be a baseline against 

which the data from phase two would be compared; at the beginning of phase two, each 

subject performed the NASA Lean Test—meant to cause the onset of PEM for subjects 

with ME/CFS, but have no effect on the control group (although we did expect the 

weekend to have an effect on UpTime for the control group). Subjects were instructed to 

go about their lives in a normal manner during the study. 

During each trial period, the subject filled out multiple nightly questionnaires, 

including the HUA Survey—most of these were used for research conducted separately 

by the BHC. Once all fifteen subjects completed their six-day trial period, the task of data 

processing began. This chapter details the method used to process the raw data collected 

by the Shimmers into daily UpTime scores. Chapter 6 describes the findings that resulted 

from statistical tests on these UpTime scores. 
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5.3 Data Preprocessing & Processing 

This section covers the methods used to properly format the Shimmer data files 

(preprocessing) and compute UpTime measurements using the formatted Shimmer data 

(processing). Preprocessing involves restructuring the Shimmer data files into a format 

that can be efficiently read into MATLAB. Processing involves (1) using MATLAB to 

convert the formatted Shimmer data to angle data and then (2) calculating UpTime from 

the angle data. 

In our study, we used ConsensysBasic to extract raw sensor data from the 

Shimmers as comma-separated values (CSV) files. Each Shimmer was programmed so 

that these CSV files contained eight columns of data: 

1. Date of sensor measurements 

2. Time of sensor measurements 

3. Accelerometer (x-axis) 

4. Accelerometer (y-axis)  

5. Accelerometer (z-axis) 

6. Gyroscope (x-axis) 

7. Gyroscope (y-axis)  

8. Gyroscope (z-axis) 

Data preprocessing is based on this structuring of Shimmer data. We share this 

information so that other researchers can modify the following preprocessing method to 

fit the structure of other IMU hardware systems. 

 

5.3.1 Data Preprocessing 

Extracting Shimmer data for all 15 subjects yielded a total of 60 CSV files for the 
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entire study—four per subject. For each subject, these four CSV files correspond to data 

collected by the Left and Right Shimmers for each of the study’s two phases: (1) Phase 

one – Left, (2) Phase one – Right, (3) Phase two – Left, and (4) Phase two – Right. For 

future reference, “paired” files are a Left and Right file from the same phase or day. All 

CSV files were preprocessed using a four-step approach: (1) trim the file, (2) divide the 

file into discrete days, (3) check the file for gaps, and (4) align paired files. These four 

steps were either performed manually, using the program TextEdit (Version 1.15) or 

MATLAB, depending on the step. 

The purpose of the first step, file trimming, was to match start and stop times of 

paired files in a single phase. For all data, paired CSV files were opened side-by-side 

using TextEdit. Both datasets were then trimmed according to their date/time columns so 

that they began and ended at the same time. In cases where Shimmers recorded data 

surpassed 72 hours, both datasets were trimmed to end 72 hours after the start time. 

Using this process, paired files were synchronized for all subjects.  

After trimming was complete, we divided each CSV file into discrete days. This 

task was completed manually using TextEdit. Recall that the study was divided into two 

phases—each lasting 72 hours—to minimize the need for subjects to return to the BHC. 

Our goal during this preprocessing step was to break each phase file into three day files, 

with each day file covering 24 hours. To accomplish this task, we made three duplicates 

of each CSV file and then manually cut each duplicate to 24 unique hours of data. 

Consequently, all phase one files were split into three files—Day 1, Day 2, and Day 3; 

and all phase two files were split into three files—Day 4, Day 5, and Day 6. Repeating 

this process for all data yielded a total of 90 single day files, six per subject. 
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Due to device instability, some Shimmers unexpectedly stopped and started 

recording data partway through a phase, resulting in multiple-hour gaps in the recorded 

data. The third step in preprocessing was identifying these randomly occurring gaps using 

a custom MATLAB script (Appendix A). This gap-checking script imported a CSV file 

and then isolated the data’s time column. Each entry in this column was converted from a 

string (of the format ‘hh:mm:ss’) to a “duration” value—a built-in MATLAB data type. 

The gap-checking script compared successive duration values, checking for gaps longer 

than one second. If a gap was identified, the script delivered a message indicating its 

location within the file. Otherwise, the file was advanced to the last stage of 

preprocessing. 

The fourth and final preprocessing step was aligning paired day files. While the 

first and last entries of paired day files had matching timestamps, the number of 

datapoints within these paired files varied slightly. Operating at our defined specifications 

(see Chapter 3.2.1), all Shimmer devices recorded data as N x 8 matrices—where N is the 

number of rows. At a sample rate of 30 Hz, each day’s CSV files are expected to have 

2,592,000 rows; however, slight differences in actual sample rates led to differences in 

the number of rows contained in paired CSV files. These differences—generally only a 

few dozen—were insignificant given the total rows in each file. Regardless, paired files 

needed to be equal in length to calculate UpTime—a problem that needed to be remedied.  

Our solution was to create a MATLAB script which ensured timestamp alignment 

throughout the entirety of paired files (Appendix B). This script first imported a day’s 

paired CSV files, saving each file in matrix form. Using the following method, the longer 

matrix was trimmed to match the shorter matrix. To keep the timestamps of the paired 
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files matched as much as possible, we opted not to remove rows from the beginning or 

end of the longer matrix. Instead, this script determined the number of rows to be 

removed from the longer matrix and then cuts rows at constant intervals throughout its 

length. At the end of the alignment process, both matrices had equal lengths with 

matching first and last timestamps. 

 

5.3.2 Data Processing 

Following preprocessing, we began calculating UpTime. Our UpTime 

calculator—another custom MATLAB script—was used to convert paired Shimmer files 

to daily UpTime scores (Appendix C). Before running this MATLAB script, the operator 

first specified the subject ID (01 to 15) and days of interest (any combination of integers 

1 through 6, corresponding to Monday through Saturday). When executed, the UpTime 

calculator followed a three-step process: (1) reading the CSV file and formatting its data, 

(2) converting the formatted sensor data to angle data, and (3) using angle data to 

calculate an UpTime score.  

The first processing step—reading and formatting data—imported the specified 

CSV files (Appendix D). Once imported, date and time columns were deleted to 

minimize RAM usage and speed up processing time. For each day, this process yielded a 

set of paired N x 6 matrices of double-precision floating-point values. The six columns of 

each matrix were comprised of 3-axis accelerometer and 3-axis gyroscope measurements 

recorded by the Shimmers.  

In the second processing step, each matrix was fed into a filtering function based 

on Phillip Salmony’s Kalman filter, which is described in Chapter 2 [28]. This Kalman 
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filter converted sensor measurements into an N-length vector of angle estimates for each 

leg, taking into account the sensitivity of each Shimmer (Appendix E and F). The 

resulting angle vector contained a full day of continuous angle measurements, with 

angles measured thirty times each second. 

In the third and final processing step, paired angle vectors were used to calculate a 

daily UpTime score. Our UpTime function took paired angle vectors and compared each 

measured angle to the critical angle (39 degrees). At each point throughout the day, the 

lower leg was determined to be either upright (measured angle < critical angle) or not 

upright (measured angle > critical angle) (see Figures 3.5 & 3.6). The final output of the 

UpTime function was an “UpTime score,” which indicated the portion of the day spent 

with the lower legs in an upright orientation. 

All paired day files were processed using this method to obtain daily UpTime 

scores. Data for all 15 study participants were processed using this method, resulting in 

six daily UpTime scores each (see Table 6.1). 

 

5.4 Choosing a Critical Angle 

Before moving to a discussion of UpTime scores, we must first explain two 

points: (1) the rationale behind selecting a critical angle of 39 degrees, and (2) the use of 

UpTime measurements where Shimmer failures caused data to be incomplete—found in 

Section 5.5. 

This thesis is primarily focused on estimating a subject’s daily upright activity as 

an estimate of ME/CFS disease severity. To determine uprightness, we evaluate leg 

angles to be either upright or not upright. This distinction is defined by the critical 
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angle—measured as degrees from vertical—which is key to calculating UpTime (see 

Figure 3.5). It is, therefore, essential that we select a proper critical angle to distinguish 

between lower leg postures. 

The critical angle must correctly differentiate between upright and reclined/supine 

postures. This differentiation is needed to assess a person’s activity level. Patients with 

ME/CFS can elevate their legs to find relief from symptoms related to OI and PEM. 

Generally, this elevation translates to patients lying in bed or sitting in a chair with the 

feet propped at least six inches off the ground. For this reason, we expected the critical 

angle to be somewhere around 45 degrees from vertical to capture the full gamut of 

ameliorative postures. 

It was also important to select a critical angle that could be increased or decreased 

by a few degrees with a minimal change in UpTime scores. To select a critical angle that 

is insensitive to change in this way, we created plots of day 1 data for three subjects—one 

subject per disease group. These plots show how UpTime scores change depending on 

the selected critical angle (see Figure 5.1). 

These plots are shown for illustration purposes. An analysis of all ninety days is 

included below. All three plots show a flat section—highlighted in red—which indicates 

the range where UpTime is less sensitive to the critical angle. Visually, we can see that 

the critical angle can increase or decrease within this highlighted range without affecting 

UpTime significantly. While these highlighted ranges vary from day to day, they overlap 

for critical angles between 45 and 60 degrees. Due to this commonality, we expected the 

appropriate critical angle to be within this range. 

Given that we were interested in where the sensitivity plots flatten out, we chose  
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Figure 5.1. Sensitivity plots for UpTime and critical angle. The top plot 

corresponds to subject 01, day 1—a healthy control. The middle plot corresponds 

to subject 07, day 1—a subject with moderate ME/CFS. The bottom plot 

corresponds to subject 11, day 1—a subject with severe ME/CFS. The areas 

highlighted in red indicate where UpTime appears to be insensitive to changes in 

critical angle. These areas overlap between 45 and 57 degrees. 
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to pursue an analysis of the slope (
𝑑𝑈

𝑑𝐴
) of these curves. By definition, UpTime becomes 

less sensitive to changes in critical angle (i.e., the sensitivity plot flattens out) as the local 

slope of this sensitivity plot approaches zero. For all ninety days of data, we calculated 
𝑑𝑈

𝑑𝐴
 

corresponding to critical angles from 10 to 80 degrees. Average 
𝑑𝑈

𝑑𝐴
 values were then 

plotted along with standard deviations to identify the critical angle with the least variation 

and the slope closest to zero (see Figure 5.2).  

We were also interested in variations in UpTime scores arising from calculation 

methods. It is preferred to calculate UpTime using angles from both the left and the right 

legs simultaneously; UpTime can also be calculated using data from only one leg when 

data from the other leg is unavailable. Figure 5.2 includes 
𝑑𝑈

𝑑𝐴
 means and standard 

 

 

Figure 5.2. Average 
𝑑𝑈

𝑑𝐴
 values. Vertical lines are +/- one standard deviation. This 

was done three times—calculating UpTime using only the left Shimmer, only the 

right Shimmer, and using both Shimmers. The critical angle with the least variation 

and smallest slope is 39 degrees. 
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deviations from all three of these UpTime calculation methods (or “Shimmer types”). 

By combining all ninety days of data in Figure 5.2, we can see that the best choice 

for critical angle is somewhere between 37 and 41 degrees; these critical angles are 

optimal because their corresponding average 
𝑑𝑈

𝑑𝐴
 values are closest to zero—indicating 

that corresponding sensitivity plots are flattest within this range. Furthermore, the 

standard of deviations for these angles—indicated by vertical lines—are relatively 

minimal. We ultimately selected 39 degrees because it meets both conditions—it is close 

to zero on the  
𝑑𝑈

𝑑𝐴
 curve with low variation between trials. 

The original assessment of upright activity, HUA, separates postures into two 

groups: (1) feet on the floor and (2) feet off the floor (see Figure 2.1). This distinction is 

meant to identify upright (exhaustive) and not upright (ameliorative) postures. HUA-

related research performed at the BHC identified the act of elevating the feet six inches 

off the floor as the threshold between these two posture types. Depending on the length of 

the legs and the height of the chair, elevating the legs six inches could yield a range of 

lower leg angles—we estimated this range to be between 30-60 degrees from vertical. 

Our identified critical angle of 39 degrees falls within this expected range and maintains a 

clinically significant separation of posture types. 

 

5.5 The Issue of Single-Shimmer Data 

In this section, we will present our argument validating UpTime scores calculated 

using data from a single leg. First, we will review the causes of single-leg data—

Shimmer failures.  
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5.5.1 Summary of Shimmer Failures 

Before beginning our study, we performed a handful of “battery drain” tests to 

verify that the Shimmers would last three full days at our operating specifications. These 

preliminary tests simply involved running the Shimmers from full to empty batteries 

while collecting data and then checking the duration of the data collected. In all test 

cases, the Shimmers recorded data for at least the expected 72 hours. Despite these 

preparatory measures, several Shimmer failures occurred during the actual study; in all 

cases, these failures led to incomplete data. Table 5.1 is a summary of all data collected 

during our study, color-coded by number of hours collected for each 24-hour day. 

Complete days, i.e., days with 24 hours of data, are shown in green. As the duration of 

data collected for a given day drops below 24 hours, the cell color changes to yellow and 

then to red. Days with 20+ hours of data were considered to be complete.  

Shimmer failures were separated into three categories: (1) battery failures, (2) 

data gaps, and (3) corrupted data. Any trial where the Shimmer battery died more than 

four hours before the end of the 72-hour phase length was counted as truncated due to 

battery failure. Of the 60 phase files shown in Table 5.1, nine have truncated data due to 

this failure type. The likely cause of battery failures is insufficient charging. We planned 

a minimum of six hours for each Shimmer to charge fully, but the actual charge time 

during the study may have varied slightly due to scheduling difficulties. Additionally, we 

saw multiple battery failures occur where the Shimmer died less than eight hours into the 

phase; the cause of these failures is unknown. In the format SUBJECT_PHASE_LEG, 

files with failures of this type are (1) 03_P1_R, (2) 04_P1_L, (3) 04_P2_R, (4) 06_P2_L, 

(5) 06_P2_R, (6) 12_P2_R, (7) 13_P2_L, (8) 13_P2_R, and (9) 15_P2_L.  
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Table 5.1. Summary of collected data color-coded by duration. Green cells are 24 hours 

long with cell color shifting to yellow and then red as duration decreases. 

Group Subject Leg 

Duration of Collected Data (hours) 

Phase 1—Before NASA Lean Test Phase 2—After NASA Lean Test 

Day 1 
Monday 

Day 2 
Tuesday 

Day 3 
Wednesday 

Day 4 
Thursday 

Day 5 
Friday 

Day 6 
Sunday 

C
O

N
TR

O
L  

1 
L 24 24 24 24 24 24 
R 24 24 24 24 24 24 

2 
L 24 24 22.5 24 24 24 
R 24 24 22.5 24 24 24 

3 
L 24 24 23 24 24 24 
R 7.2 0 0 24 24 24 

4 
L 6.5 0 0 5.75 0 17.5 
R 24 24 24 24 24 7.5 

5 
L 24 24 21 24 24 24 
R 24 19 6.5 24 24 24 

M
O

D
ER

A
T

E 
M

E/
C

FS
 

6 
L 24 24 23.5 24 24 5.5 
R 24 24 23.5 24 24 5.5 

7 
L 24 24 24 24 24 24 
R 24 24 24 24 24 24 

8 
L 24 24 22 24 24 24 
R 24 24 22 24 24 24 

9 
L 24 24 24 24 24 24 
R 24 24 24 24 24 24 

10 
L 24 24 23.5 24 24 24 
R 24 24 23.5 24 24 24 

SE
V

ER
E 

M
E/

C
FS
 

11 
L 24 24 21 24 24 24 
R 24 24 21 24 24 24 

12 
L 24 24 23 4.5 21 24 
R 24 24 23 24 24 3.5 

13 
L 24 24 22 24 13 0 
R 24 24 22 24 4.5 0 

14 
L 24 24 20 11 3.5 15.5 
R 24 24 20 24 24 24 

15 
L 0 0 0 24 22.5 0 
R 0 0 0 24 24 24 
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The second Shimmer failure type is data gaps. In these cases, the Shimmer 

randomly stopped recording data partway through the trial and then randomly began 

collecting data again any number of hours later. These failures were identified via the gap 

checking MATLAB script discussed in Chapter 5.2.1. Four of the 60 total phase files 

shown in Table 5.1 are classified as failures due to gaps in the recorded data. Files with 

failures of this type are (1) 04_P2_L, (2) 05_P1_R, (3) 12_P2_L, and (4) 14_P2_L. 

It is also worth noting that another two Shimmer files were marked by 

ConsensysBasic as corrupted and were therefore unrecoverable. The cause of this failure 

type is unknown; however, it is recommended that future studies avoid using Shimmers 

as a result of these unpredictable and unexplainable failures. Files with failures of this 

type are (1) 15_P1_L and (2) 15_P1_R. 

In total, at least one type of Shimmer failure occurred in 15 of the 60 total phase 

files—a 25% failure rate. Due to these failures, 18 of the 90 total days have data from 

only one leg and another seven lack data from both legs. While the seven days without 

data from either leg are completely lost, there is still hope for the 18 days with data from 

only one leg. If we can prove the validity of UpTime measurements calculated from 

single-leg data, these 18 days (20% of all data) can still be of use. To justify including 

these trials, we must first confirm that UpTime is the same, regardless of whether it is 

calculated using one or two Shimmers.  

Moreover, determining whether two IMUs are needed to determine UpTime is a 

clinically meaningful exercise. The burden on the user is lower if they only have to wear 

one device rather than two. In the long term, this potential change could be meaningful if 

UpTime clinics choose to use UpTime as a biomarker for treatment efficacy. 
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5.5.2 Validation of Single-Shimmer UpTime Calculations 

The mean plot shown in Figure 5.3 compares UpTime to Shimmer type; levels for 

Shimmer type are (1) UpTime calculated using data from both Shimmers, (2) UpTime 

calculated using data from the left Shimmer only, and (3) UpTime calculated using data 

from the right Shimmer only. Figure 5.3 shows substantial overlap between all 

confidence intervals. This overlap indicates that there may not be a significant difference 

between UpTime calculated using different Shimmer types. Looking at a mean plot is a 

somewhat subjective analysis. To confirm this conclusion, we need to perform an 

objective statistical test. 

A pairwise t-test allows us to perform and compare the results of multiple paired 

t-tests, allowing us to compare all three Shimmer types at once. We can use this statistical 

 

 

Figure 5.3. Mean plot of UpTime data grouped by Shimmer. 

Shimmer type confidence intervals overlap heavily. 
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test to evaluate our UpTime data because all of the necessary assumptions are met: (1) 

UpTime is a continuous variable, (2) the observations are independent of one another, (3) 

UpTime scores are normally distributed, and (4) the data contains no outliers. Figure 5.4 

shows that UpTime measurements follow a nearly normal distribution. As further 

confirmation of normality, the Shapiro-Wilk test produced a p-value of 0.069, indicating 

that the distribution of UpTime is not significantly different from a normal distribution 

(at the 𝛼 = 0.05 significance level). 

As for the paired t-tests, the null hypothesis is that the mean difference between 

the paired samples is zero. The pairwise comparison was performed in R Studio (Version 

1.1.463) using the Bonferroni multiple-comparison correction factor. The results of this 

test confirm that UpTime does not differ by Shimmer type (see Table 5.2) 

 

 

Figure 5.4. This bar plot shows that UpTime measurements are 

normally distributed. 
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Table 5.2. Results of the pairwise t-test for UpTime and Shimmer type. At the 

𝛼 = 0.05 significance level, we can conclude that UpTime is the same for all 

Shimmer types. 

 Both Left 

Left 0.14 - 

Right 0.14 0.14 

*P-value adjustment method: Bonferroni 

 

The mean plot (Figure 5.3) and the pairwise t-test both prove that the means for 

UpTimes calculated using each method are not statistically different (𝑝 > 0.05). Note 

that the power for this statistical test is 0.19, indicating that there is a fair chance we have 

performed a Type II error; a larger sample size is needed to confirm this conclusion. 

While no statistically significant difference was found, we need to take this conclusion a 

step further to prove that the UpTime scores for each Shimmer type are close to identical. 

In Figure 5.5, each line represents one day with the points on the left and right 

corresponding to UpTime scores calculated using only the left or right Shimmer. Left and 

right data are available for 64 of the 90 total days. In most cases, the lines connecting 

these paired UpTime scores are nearly horizontal, indicating that UpTime is very similar 

regardless of Shimmer type. Furthermore, even though some lines are further from 

horizontal, the average left and right UpTimes are within 2% of each other.  

Lastly, an UpTime score calculated using both Shimmers is the average of the left 

and right legs’ UpTimes. Figure 5.5 compares left to right UpTimes. A plot comparing 

left or right UpTime to an UpTime calculated from both devices would have slopes cut in 

half from what is seen in Figure 5.5. 
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Figure 5.5. Plots of paired UpTimes separated by group. Paired left and right 

UpTimes are connected by lines. Note that most lines are nearly horizontal. Left 

and right means (indicated by underlying boxplots) are similar for all groups. 

 

5.6 Conclusion 

In conclusion, 25 of the 90 days in our study lack data from one or both 

Shimmers. Eighteen of these days have data from only one Shimmer. We have shown 

that UpTime calculated using one Shimmer—either left or right—is not statistically 

different from UpTime calculated using both Shimmers. Furthermore, left-only and right-

only calculation methods give UpTime measurements that vary on average by only 2% 

(Figure 5.5). We conclude that this evidence is sufficient to justify the inclusion of daily 

UpTime scores calculated using data from a single Shimmer in our study results. By 

including days with single-Shimmer data, we reduce the number of days lost due to 

Shimmer failures from 25 to 7, thereby salvaging 72% of all lost data. 

In future studies, we do not recommend using Shimmers due to the 15% failure 

rate. Alternative IMUs exist in the market. However, in-house development of an IMU 
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device is a viable option. A custom IMU device would allow for the possibility of a 

larger battery and more ergonomic form-factor.  

The validation of single-Shimmer UpTime scores means that, for added comfort, 

subjects in future related studies could be required to wear a single IMU. Even so, the use 

of redundant IMUs may still be wise, depending on expected failure rates of a custom 

IMU device. Furthermore, redundant IMUs would mitigate the effect of asymmetrical leg 

postures on UpTime calculations. 
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CHAPTER 6 

 

STUDY RESULTS & DISCUSSION 

 

6.1 Introduction 

Previously, we have discussed the value of using IMUs to measure upright 

activity. After selecting an IMU—the Shimmer—and proving its accuracy, we planned a 

case-control study that was carried out by the BHC. With subject data properly 

processed, we now move into a comparison of measurements. 

The bulk of this analysis focuses on UpTime comparisons, beginning with a 

comparison by group. In our study, subject groups corresponded to three distinct disease 

levels: (1) controls, (2) moderate ME/CFS, and (3) severe ME/CFS. After comparing 

UpTimes by group, we will compare all UpTime measurements before and after the 

NASA 10-minute Lean Test—also referred to as the “NASA Lean Test” or just “Lean 

Test.” Finally, we will compare IMU-based UpTime measurements to results from the 

original HUA questionnaire. Following these UpTime-related analyses, we will review a 

variety of measurements collected by the Oura Ring.  

The broader effect of any conclusions made in this chapter is limited due to the 

low number of samples collected; only five subjects were included in each group. This 

study was designed to be a sort of pilot study. In that sense, it was meant to flesh out the 

process of using IMUs to accurately measure UpTime and point researchers at the BHC 
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towards areas of interest. Future studies with sufficiently large, randomized samples are 

required to improve the generalizability of these results.  

 

6.2 Differences Between Disease Groups 

All UpTime scores are provided in Table 6.1, along with daily and weekly 

averages. Due to differences in activity levels brought on by the presence and severity of 

ME/CFS, we expected the control group to have the highest UpTime and the severe 

ME/CFS group to have the lowest UpTime, with the moderate ME/CFS group’s UpTime 

somewhere in the middle. The weekly mean column in Table 6.1 supports this 

expectation.  

Controls generally had average weekly UpTimes above 30%. Subjects with 

moderate ME/CFS generally had UpTimes between 20 – 30%. Subjects with severe 

ME/CFS averaged daily UpTime scores below 20%. The non-overlapping group 

confidence intervals (shown by the vertical colored lines in Figure 6.1) are evidence 

indicating that UpTime differs by disease level.  

The results of a linear mixed-effects model further substantiate these group 

UpTime differences. Qualifying assumptions for the linear mixed model—linearity, 

normally distributed residuals, and homoscedasticity—were met by the UpTime data 

(Figure 6.2). Because this research was developed as a pilot study—meant to identify 

areas of interest to be pursued in future (externally funded) studies—the sample sizes are 

smaller than we typically expect for statistical tests. Therefore, the results of this analysis 

should be interpreted as preliminary evidence for future full-scale studies. 
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Table 6.1. UpTime scores for all subjects. Cells are color-coded (high UpTime = green, 

medium UpTime = white, low UpTime = red). A dash indicates missing data. 

Group Subject 

UpTime (%) 

Day 1 
Monday 

Day 2 
Tuesday 

Day 3 
Wednesday 

Day 4 
Thursday 

Day 5 
Friday 

Day 6 
Saturday 

Weekly 
Mean 

C
o

n
tr

o
l 

1 44.79 50.86 51.90 52.77 50.36 27.98 46.44 

2 43.92 37.96 45.22 41.72 39.48 38.88 41.20 

3 50.40 51.24 44.04 27.97 12.25 17.31 33.87 

4 40.21 46.06 47.31 50.28 32.32 - 43.24 

5 45.05 16.13 24.76 26.44 35.97 24.11 28.74 

Daily 
Mean 

44.87 40.45 42.65 39.84 34.07 27.07 38.16 

M
o

d
er

at
e 

6 25.10 43.41 39.73 30.45 40.79 - 35.90 

7 28.19 20.55 15.12 28.74 28.67 20.73 23.66 

8 31.65 37.84 22.15 32.04 20.26 32.52 29.41 

9 26.06 16.39 14.50 24.27 23.45 31.73 22.73 

10 17.43 10.71 22.47 30.70 28.08 20.59 21.66 

Daily 
Mean 

25.69 25.78 22.80 29.24 28.25 26.39 26.36 

Se
ve

re
 

11 2.41 2.64 2.86 9.70 19.55 9.27 7.74 

12 20.35 6.88 13.35 13.81 11.84 0.04 11.05 

13 13.34 14.66 12.63 15.43 - - 14.01 

14 20.81 12.43 - 18.70 18.04 21.52 18.30 

15 - - - 34.08 6.76 11.04 17.29 

Daily 
Mean 

14.22 9.15 9.62 18.34 14.05 10.47 12.64 
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Figure 6.1. Mean plot of UpTime separated by disease 

level. Vertical lines represent 95% confidence intervals. 

These intervals do not overlap for groups, indicating 

significant differences in group UpTimes. 

 

 

Figure 6.2. Residuals plot (left) and Q-Q plot (right) for UpTime data. The residuals 

plot shows that our collected UpTime data has constant variance, i.e., it is 

homoscedastic. The Q-Q plot shows all points close to the regression line; thus, the 

data is normally distributed.  
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The results of a linear mixed-effects model further substantiate these group 

UpTime differences. Qualifying assumptions for the linear mixed model—linearity, 

normally distributed residuals, and homoscedasticity—were met by the UpTime data 

(Figure 6.2). Because this research was developed as a pilot study—meant to identify 

areas of interest to be pursued in future (externally funded) studies—the sample sizes are 

smaller than we typically expect for statistical tests. Therefore, the results of this analysis 

should be interpreted as preliminary evidence for future full-scale studies. 

With the proper assumptions met, we fit all UpTime scores to a linear mixed 

model, including a fixed effect (Disease Level), a blocking factor (Day), and a random 

effect (Subject). In R, this was done using the “lmer” function in the “lme4” library; this 

was done using the following formula: Uptime ~ DiseaseLevel + Day + (1|Subject). The 

results of this model are shown in Table 6.2. The results of Table 6.2 confirm that mean 

Disease Level UpTimes are not equal (𝑝 < 0.0001). The power associated with this one-

way ANOVA is 1, indicating that these results will likely be valid in full-scale studies. 

To further expand upon these conclusions, we used Tukey’s HSD (honestly 

significant difference) test. Up to this point, we have only shown that the group UpTime 

means are not the same. Tukey’s HSD test identified which specific group differences 

exist. For all pairs of means, the calculated p-values are far less than 0.05, meaning that 

each group’s mean UpTime is different from all other groups (Table 6.3). 

With the combined results of the mean plot, the linear mixed model, and Tukey’s 

HSD test, we can confidently state that UpTime differs for all disease levels. Using the 

UpTime scores in Table 6.1, we can define the UpTime expected for each group. Healthy 

individuals are expected to have weekly UpTime scores between 30% and 50%. Patients  
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Table 6.2. Results of disease level UpTime comparison. Used a linear mixed-effects 

model in the form of a Type III Analysis of Variance Table with Satterthwaite’s 

method. P-values indicate a significant difference in UpTime by disease group. 

Factor 
Sum of 
Squares 

Mean Sum of 
Squares 

F value P-value 

Disease Level 3572.5 1786.3 27.79 8.22e-06*** 

Day 440.2 88.0 1.37 0.247 

*Significance codes:  0   ‘***’   0.001   ‘**’   0.01 ‘*’   0.05   ‘.’   0.1   ‘ ’   1 
 

with moderate ME/CFS are expected to have weekly UpTime scores between 20% and 

30%. Patients with severe ME/CFS are expected to have weekly UpTime scores below 

20% (Figure 6.3). These conclusions align with the observations of the BHC and their 

understanding of ME/CFS. Symptoms of this disease—such as post-exertional malaise 

(PEM) and orthostatic intolerance (OI)—limit a patient’s ability to remain upright. As 

disease severity increases, so do these limitations. We now objectively see that UpTime 

corresponds to the presence and severity of ME/CFS. 

 

6.3 Comparing UpTime Before vs. After NASA Lean Test 

Next, we looked for differences before and after the NASA Lean Test, i.e., phase one 

versus phase two. The NASA 10-minute Lean Test requires subjects to stand straight 

upright and lean against a wall, with only the shoulder blades contacting the wall, and 

heels six inches from the wall [32]. In our study, the purpose of this test is to induce Post-

Exertional Malaise (PEM) in subjects with ME/CFS. For this reason, we expected to see 

ME/CFS group UpTimes decrease after the test.  
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Table 6.3. Tukey’s HSD test—used to clarify differences between disease groups. P-

values indicate that all disease groups have unique UpTime averages. 

Disease Level Difference Lower Upper 
P-value 

(adjusted) 

Moderate-Control -12.19 -18.17 -6.20 2.13e-05*** 

Severe-Control -25.54 -31.82 -19.25 0.00e+00*** 

Severe-Moderate -13.35 -19.64 -7.06 9.80e-06*** 

*Significance codes:  0   ‘***’   0.001   ‘**’   0.01 ‘*’   0.05   ‘.’   0.1   ‘ ’   1 

 

In this comparison, a baseline UpTime score was calculated by averaging the 

three days before the Lean Test: Monday, Tuesday, and Wednesday. This baseline was 

used for comparison when reviewing the proceeding days: Thursday, Friday, and 

Saturday. Therefore, the variable “Number of Days after Lean Test” has the following 

levels: 

 

• Baseline (average UpTime for Monday, Tuesday, and Wednesday) 

• 1 Day after Lean Test (Thursday’s UpTime) 

• 2 Days after Lean Test (Friday’s UpTime) 

• 3 Days after Lean Test (Saturday’s UpTime) 

 

UpTime averages for each group, shown in Figure 6.4(a-c), do not decrease 

following the Lean Test as expected. Rather, mean UpTimes for ME/CFS groups spike 

one day after the test.  
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Figure 6.3. UpTime predictions for each group. Subject weekly mean UpTime 

scores are shown on the left, with bolded group averages. The scale on the right 

indicates the ranges of expected UpTime scores expected for each group. 
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Figure 6.4. Group and individual UpTime plots. Group mean plots for UpTime 

(a-c); large confidence intervals are the result of UpTime variation within 

groups and data lost due to Shimmer failures. Individual UpTime trends (d-f). 

 

Interestingly, the control group alone decreases after the Lean Test; however, this change 

is due to weekend relaxation rather than PEM. Furthermore, the ME/CFS groups’ 

UpTime spikes could have been a direct result of participating in the NASA Lean Test. A 

5-10% increase in UpTime equals roughly 1-2 hours of upright activity, which could 

easily be the amount of time required to drive to the BHC, take the Lean Test, and drive 

home. 

Because the confidence intervals in Figure 6.4(a-c) overlap so heavily, we do not 

expect to find any significant difference in mean UpTimes before and after the NASA 
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Lean Test. This suspicion is confirmed by the high p-values shown in Table 6.4, which 

indicate that there are no significant differences in UpTime by day. 

Despite the trends seen in Figure 6.4, we find ourselves forced to reject the 

consensus that activity decreases after PEM is induced. This finding can be explained in a 

few different ways. For one thing, we knew that sampling was insufficient for this study. 

It is possible that the ANOVA was unable to detect differences in means due to the 

scarcity of data available for this test. The power levels associated with these conclusions 

are 0.43 for controls, 0.14 for moderate ME/CFS, and 0.25 for severe ME/CFS. Because 

these power levels are so low, it is possible that we may have committed a Type II 

error—failing to reject a false null hypothesis. For this reason, we recommend that this 

test be performed again during a full-scale study. 

 

Table 6.4. Single-Factor ANOVA tables comparing UpTime before and after Lean Test. 

For each disease level, UpTime means do not differ significantly. 

 Factor 
Degrees of 
Freedom 

Sum of 
Squares 

Mean Sum 
of Squares 

F value P-value 

C
O

N
TR

O
L Days After 

Lean Test 
3 630 210.0 1.658 0.218 

Residuals 15 1900 126.6 - - 

M
O

D
ER

A
TE

 
M

E/
C

FS
 Days After 

Lean Test 
3 58.8 19.59 0.431 0.734 

Residuals 15 682.0 45.47 - - 

SE
V

ER
E 

M
E/

C
FS

 Days After 
Lean Test 

3 167.4 55.80 0.905 0.465 

Residuals 15 801.5 61.65 - - 

*Significance codes:  0   ‘***’   0.001   ‘**’   0.01 ‘*’   0.05   ‘.’   0.1   ‘ ’   1 
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Experimental design flaws could be another potential cause for this result. On the 

first day of each trial, the subject traveled to and from the BHC to be equipped with the 

Shimmers and Oura Ring. Due to the extreme sensitivity of ME/CFS patients, this travel 

alone could have unintentionally induced PEM. With patients experiencing PEM 

throughout both phases (rather than just during days 4 through 6), we would expect to see 

constant UpTime scores. Requiring subjects to travel to and from the BHC could easily 

have affected UpTime scores for both ME/CFS groups. Future studies should consider 

home-visits to reduce this effect. 

The floor effect could be an alternative explanation for these unexpected results; 

UpTime can only go so low. Baseline UpTimes for the ME/CFS groups could already be 

at minimum allowable levels. Further UpTime reductions could mean a significant 

decrease in lifestyle. (The quality of life for an individual with ME/CFS is already very 

low). Some subjects in the moderate ME/CFS group have part-time jobs; taking a few 

days off to recover from PEM may not be an option. For the severe ME/CFS group, it 

simply may not be possible to lower UpTime from their average four hours per day 

without going stir-crazy. 

Lastly, constant ME/CFS UpTime scores could be a result of self-medication. 

Except for the morning of the Lean Test, ME/CFS subjects were permitted to take their 

prescribed medication(s) throughout the study. Subjects may have medicated more 

heavily following the NASA Lean Test to mitigate the effects of PEM, thus 

unintentionally flattening UpTime.  

Whatever the reason, it is indisputable that the NASA Lean Test had no 

statistically significant effect on UpTime. A better experiment design would track each 
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subject for a longer period before and especially after the NASA Lean Test, thus 

establishing more accurate baseline UpTime scores for each subject. However, 

limitations in funding and time prohibited these design improvements. Further 

investigation is outside of the scope of this thesis but may provide deeper insight into the 

causes and effects of PEM. 

 

6.4 HUA vs. UpTime 

Moving on from the NASA Lean Test, we turn to an evaluation of HUA as a 

proxy for IMU-based UpTime scores. Until this study, the only tool researchers at the 

BHC had to evaluate daily upright activity was HUA—a questionnaire that crudely 

captures the amount of time an individual spends with the feet on the floor each day (see 

Figure 5.3). One purpose of this study was to develop an objective evaluation of upright 

activity with a high level of resolution; our IMU-based solution, using Shimmers to 

measure UpTime, has been described fully in the preceding chapters of this thesis. In this 

section, we look to compare UpTime (measured by the Shimmer devices) to HUA 

(calculated based on responses to the questionnaire). 

Historically, HUA was reported in units of hours; however, we have converted 

HUA to a percentage of the day to accommodate its comparison to UpTime. Subjects 

were asked to fill out a HUA survey each day during the study; the results of these 

surveys are plotted with corresponding UpTime measurements in Figure 6.5. This figure 

shows that subjects generally tend to overestimate their UpTime. Indeed, a correlation 

plot—broken up by disease level—shows that HUA and UpTime are not correlated for 

both ME/CFS groups (Figure 6.6). 
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Figure 6.5. HUA and UpTime compared. The study’s combined ninety days 

of data are displayed side-by-side. An entry where UpTime is not shown 

indicates a lack of Shimmer data. 

 

 

 

Figure 6.6. Correlation plots between UpTime and HUA (plotted separately 

according to disease level). 
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Both ME/CFS groups reported a wide range of HUA scores, while UpTime 

remained relatively invariant. This non-correlation is illustrated by the horizontal grey 

and red lines in Figure 6.6. Conversely, the control group estimated UpTime with some 

level of accuracy. We see a positive, linear correlation between UpTime and HUA for 

this group shown by the blue line in Figure 6.6. However, a multitude of blue outliers 

suggests the weakness of this correlation. The non-correlation between HUA and 

UpTime can be seen in Figure 6.7. HUA and UpTime follow similar trends for controls, 

but ME/CFS group comparisons differ widely. For all disease levels, HUA generally 

appears to overestimate UpTime by 5-10%. 

 

 

 

Figure 6.7. Mean plots for HUA (a-c) and UpTime (d-f), separated by disease 

level. This figure allows for trend comparison between the two measurements 

by disease level. 
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A paired t-test comparing all HUA and UpTime scores yielded a p-value of 2.72e-

05, confirming that the two measurements are significantly different. The corresponding 

95% confidence interval for the true mean difference is (4.17, 10.91). This interval means 

that we are 95% confident that the average difference between HUA and UpTime is 

between 4.17 and 10.91%. Given the range of expected UpTime for the Moderate 

ME/CFS group appears to be between 20-30%, any measurement system needs to have 

less than 10% UpTime error to accurately identify ME/CFS disease severity. For this 

reason, the increased resolution and accuracy of IMU-based UpTime will provide 

considerable benefit to clinicians monitoring patient improvement. 

 

6.5 Oura Ring Data 

 A secondary interest of this research was to explore contributors to unrefreshing 

sleep. The Oura Ring collects an incredible amount of sleep-related data; for this reason, 

we hoped its use would further our understanding of the causes and effects of 

unrefreshing sleep. In this section, we review and discuss the Oura Ring measurement 

types that were expected to have some link to sleep efficacy and overall wellness: (1) 

Sleep Score, (2) Hours of Sleep, (3) Awake Time, (4) Readiness Score, (5) Lowest 

Resting heart rate (HR), (6) Activity Score, and (7) HRV. Much of the data processing 

done by the Oura Ring is proprietary, but each measurement type will be explained with 

as much detail as Oura has provided on their website [33]. Because the Oura Ring was 

not the primary interest of this thesis, analysis of each measurement type was only 

performed at a surface level. If the findings of an initial evaluation appeared significant, 

further analysis was performed. 
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6.5.1 Sleep Score  

The Oura Ring estimates a daily Sleep Score, measured between 0 and 100%, 

which is a general evaluation of sleep quality. Sleep Score is a weighted sum of time 

spent in each stage of sleep stage (REM, light, and deep), sleep efficiency, sleep latency, 

restfulness, and sleep timing. Oura has not detailed the specific combination of these 

variables, but they do identify a sleep score of approximately 80% as normal for healthy 

adults. Because individuals with ME/CFS experience unrefreshing sleep, we expected 

their Sleep Scores to fall below this 80% threshold. Instead, we found that all disease 

level mean Sleep Scores were comparable—none of which were too far from “normal” 

(Figure 6.8(a)). 

 

6.5.2 Hours of Sleep 

The Oura Ring records total sleep time as “Hours of Sleep” (Figure 6.8(b)). This 

measurement type shows that all groups are within the normal range for healthy adults— 

 

 

Figure 6.8. Oura Ring Sleep Scores (a) and Hours of Sleep (b), separated by disease 

level. Horizontal dotted lines identify normal scores for each measurement type. 
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7 to 8 hours. However, it is important to remember that ME/CFS patients are not healthy, 

and what is considered “normal” sleep quality/quantity is likely different for them. We 

conclude that the unrefreshing nature of sleep for individuals with ME/CFS is unrelated 

to sleep duration.  

 

6.5.3 Awake Time 

Another way to evaluate sleep quality is by measuring Awake Time. The Oura 

Ring calculates this value by summing the time spent awake in bed before falling asleep 

(sleep latency) and after falling asleep. A night of restless sleep will yield a higher Awake 

Time. Generally, a higher Awake Time will lead to a feeling of tiredness the next day. 

Because ME/CFS groups experience constant fatigue, we expected that they might have 

higher Awake Times; however, this measurement’s only clear trend is Awake Time 

increasing over the weekend for controls (Figure 6.9(a)). 

Personal scores for subjects with ME/CFS tend to be a bit erratic—possibly due to 

measurement reliability. We cannot draw any useful conclusions about the connection 

between Awake Time and unrefreshing sleep from this analysis. Furthermore, Figure 6.9 

shows no indication that sleep quality increases or decreases after the NASA Lean Test—

performed on day 4. 

 

6.5.4 Readiness Score 

The Oura Ring’s Readiness Score—measured from 0 to 100%—is a combination 

of resting heart rate, body temperature, previous night sleep, and previous day activity. 

Oura has not explained how these contributors are used to calculate Readiness Score. We 
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do know that a Readiness Score below 70% indicates that the user should take the day to 

recover and avoid overexertion. All groups averaged Readiness Scores above 70% every 

day of the study (Figure 6.10). 

Figure 6.10 shows that ME/CFS groups tended to have higher Readiness Scores 

than the control group, indicating that they were better prepared for days of intense 

physical activity. Oura’s algorithm calibration process could explain this unexpected 

 

 

 

Figure 6.9. Mean plots of Awake Time. For each group (a-c). Individual daily Awake 

Time measurements for each group (d-f). Some data were lost due to Oura Ring 

failures, including all of day 2 for the controls. 
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Figure 6.10. Oura Ring Readiness Score separated by group and by 

day. The threshold of general readiness, 70%, is identified by a 

horizontal dotted line. Some data were lost due to Oura Ring 

failures, including all of day 2 for the controls. 

 

result. Readiness Score was calibrated for healthy subjects rather than for people with 

ME/CFS; in other words, the low activity levels of the ME/CFS groups may have tricked 

the algorithm into thinking they were more prepared for higher activity when, in fact, 

they were not. Like the Sleep Score, this unexpected result could be the effect of 

evaluating a sick population using normal baselines calibrated for healthy individuals. 

 

6.5.5 Lowest Resting HR 

During sleep, the Oura Ring measures the user’s heart rate at 10-minute intervals. 

The lowest of these measurements is called Lowest Resting HR; a lower resting HR 

indicates better sleep quality and better overall health. We expected both ME/CFS groups 

to have resting HR scores above their healthy counterparts. Additionally, we expected the 
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onset of PEM post-Lean Test to cause Lowest Resting HR measurements to rise for days 

4, 5, and 6. However, the data shown in Figure 6.11 refutes our expectations on both 

counts. 

While group means for Lowest Resting HR did not meet our expectations, we do 

see an interesting trend in Figure 6.11. For some reason, of all three disease levels, the 

moderate ME/CFS group has the lowest scores for this measurement type. An ANOVA 

test confirms that Lowest Resting HR scores do indeed differ significantly by disease 

level (Table 6.5). Further clarification from Tukey’s HSD test shows that Lowest Resting 

HR averages differ for every disease level (Table 6.6). 

 

 

Figure 6.11. Lowest Resting Heart Rate means, as measured by the Oura 

Ring. Data is separated by group and by day. Some data were lost due to Oura 

Ring failures, including all of day 2 for the controls. 

 



79 

 

 

 

 

 

 

Table 6.5. Multiple-factor ANOVA table for Lowest Resting HR data. Data collected by 

Oura Rings. Disease levels are shown to have statistically significant means. 

Factor 
Degrees of 
Freedom 

Sum of 
Squares 

Mean Sum 
of Squares 

F value P-value 

Disease Level 2 775.4 387.7 30.337 5.03e-08*** 

Day 5 35.4 7.1 0.555 0.734 

Subject 8 1585.5 198.2 15.509 6.95e-09*** 

DiseaseLevel:Day 9 87.3 9.7 0.759 0.654 

Residuals 31 396.1 12.8 - - 

*Significance codes:  0   ‘***’   0.001   ‘**’   0.01 ‘*’   0.05   ‘.’   0.1   ‘ ’   1 

 

 

 

 

Table 6.6. Tukey’s HSD test comparing Lowest Resting HR by group. Data recorded by 

Oura Rings. All groups are shown to have statistically different means. 

Disease Level Difference Lower Upper 
P-value 

(adjusted) 

Moderate-Control -4.65 -7.66 -1.64 0.0017** 

Severe-Control 4.71 1.96 7.46 0.0006*** 

Severe-Moderate 9.36 6.39 12.34 0.0000*** 

*Significance codes:  0   ‘***’   0.001   ‘**’   0.01 ‘*’   0.05   ‘.’   0.1   ‘ ’   1 
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While we are not surprised to see that each group differs in terms of Lowest 

Resting HR scores, the actual order defied our expectations: 

1. Lowest Resting HR: Moderate ME/CFS 

2. Middle Resting HR: Controls 

3. Highest Resting HR: Severe ME/CFS 

One possible explanation is that Lowest Resting HR varies widely from person to person, 

even for healthy adults. The unexpected results here could easily be explained by the 

presence of normal measurement variation, compounded by sub-optimal sample size. 

Each subjects’ Lowest Resting HR scores (Figure 6.12) reflect this strange ordering. (It is 

also worth noting that the Oura rings failed to record Lowest Resting HR on several 

occasions, as evidenced by missing data in Figure 6.12.) 

Even though the control group is made up of non-ME/CFS subjects, this group is 

only healthy insomuch as its subjects do not have ME/CFS. Some controls have other 

ailments, including heart conditions, which could also explain the unexpectedly high 

resting HR of the control group. 

 

 

Figure 6.12. Lowest Resting HR separated by subject and sorted into groups. 
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Although we cannot pinpoint the exact reason disease levels are ordered in this 

unexpected manner, Lowest Resting HR does appear to differentiate between the 

moderate and severe ME/CFS groups. This distinction could explain more about the 

effects of ME/CFS as it increases in severity. Unfortunately, sample sizes are too small to 

make this claim with confidence. For this reason, it could be wise to focus on this 

measurement type during future investigations when funding allows for data collection 

from appropriately sized samples. 

 

6.5.6 Activity Score 

Another proprietary measurement of the Oura Ring is Activity Score. This 

measurement type gauges the user’s recent activity, measured from 0 to 100%. Activity 

Score is unique because it is initially set at maximum, and then adjusted down to match 

the user’s actual activity over time. Once the Activity Score has normalized to the user, 

this score will accurately measure the user’s activity level. To some extent, this score 

normalization explains the downward trend seen in Figure 6.13(b) throughout the week; 

another portion of this downward trend is likely due to actual daily UpTime differences. 

At first glance, a comparison of each group’s Activity Score does not appear to 

show any significant differences (Figure 6.13(a)). However, a subtle difference can be 

seen when the groups are compared side-by-side (Figure 6.14(a)).  

We believe that a combination of factors is at play here. For one thing, all data is 

normalizing from the first day’s Activity Score (set at maximum in all cases) towards 

Activity Scores representing actual activity levels. To some extent, this explains the 

downward trends for all groups. We also know that the control group’s UpTime  
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Figure 6.13. Mean plots of Oura Ring Activity Scores. Average group 

Activity Scores (a) are nearly identical. A weekly trend becomes clear 

when data are grouped by day (b). 

 

decreases over the weekend (see control data in Figure 6.14(b)); this would explain the 

downward trend in Activity Score as well. 

While we do not know the official number of days required to normalize Activity 

Score, we can see that both ME/CFS groups separate from the control group around day 3 

or 4 (Figure 6.14(a)). By days 5 and 6, this separation is even more distinct. Future 

studies with longer data collection periods will allow researchers to compare Activity 

Scores more accurately. Oura Rings should be distributed to subjects well before the start 

date of the study to ensure that the Oura Ring’s Activity Score normalization period has 

passed by the time data collection begins.  

Evaluation of the Oura Ring’s Activity Score was performed to see if UpTime 

could be approximated using an existing commercially available smart device. Figure 

6.14 shows that the Oura Ring is not capable of efficiently capturing activity levels for 

individuals with ME/CFS. The IMU-based UpTime measurements developed in this 

thesis do not require this week-long normalization period before accurate activity  
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Figure 6.14. IMU-based UpTime compared to Oura Ring Activity Level. 

Activity Score separated by group and day (a). UpTime comparison—

for trend comparison—also separated by group and day (b). 
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measurements can be recorded. Furthermore, placing an IMU on the lower leg (rather 

than on the hand) provides a more direct measurement upright activity. 

 

6.5.7 HRV 

The final Oura Ring measurement considered in this thesis is heart rate variability 

(HRV). This measurement quantifies the time-variation between heartbeats. HRV has 

been shown to correlate with stress levels and general health, with higher HRV indicating 

low stress [34] and good heart health [35]. A healthy heart tends to be a bit looser with 

the timing of its beating, thus increasing heart rate variation; when stress increases, the 

timing of the heart will become more precise, thus decreasing heart rate variation. The 

Oura Ring records HRV scores each night as the user sleeps, thereby ensuring consistent 

measurement circumstances and allowing for more comparable readings. 

HRV varies widely from one person to another and is, therefore, most useful 

when evaluated as an individual trend. Due to its natural response to stress and illness, we 

expected average HRV to be lower for both ME/CFS groups. Moreover, we expected 

HRV to decrease for the ME/CFS groups after the NASA Lean Test due to the onset of 

PEM. Despite our expectations, HRV trends for almost all ME/CFS subjects were 

invariant throughout the week (Figure 6.15(b & c)). Figure 6.15(a) shows that the control 

group’s HRV scores trended lower than we expected (Figure 6.15).  

The balance of how stress and illness affect HRV could explain why the control 

group had lower HRV scores than we expected. For this group, a decrease in HRV scores 

(Figure 6.15(a)) makes sense on days 5 and 6, given the raised resting heart rates  
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Figure 6.15. HRV measurement comparison. Subject Average HRV 

measurements (a-c), grouped according to disease level. Numerous gaps in 

the data exist, commonly occurring on the second day after equipping the 

Oura Ring. Subject 11’s Oura Ring may have malfunctioned. The Oura 

Ring failed to collect data from subjects 3, 6, 10, and 12. HRV scores are 

also compared by disease level and day (d). 
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(Figure 6.11) and reduced sleep quality (Figures 6.9(a)) associated with the weekend. 

There does appear to be a difference in average HRV for the ME/CFS groups. Subjects 

with severe ME/CFS average HRV scores seven milliseconds lower than their moderate 

ME/CFS counterparts. Unfortunately, Oura Ring failures limited the sample size for this 

measurement type below what is needed to pursue a statistical analysis of this difference. 

Future studies should continue this investigation of HRV differences between ME/CFS 

groups.  

Another trend we see in Figure 6.15(b-c) is invariant HRV scores from all but one 

ME/CFS subjects. Invariant HRV could be a side-effect of ME/CFS caused by the floor 

effect; HRV can only go so low, especially with the severe ME/CFS group. Alternatively, 

invariant HRV could be a valuable biomarker of ME/CFS disease severity, with lower 

scores corresponding with higher disease severity. As previously discussed, the stress-

inducing demands of day one could have caused the onset of PEM for the diseased 

groups—another possible explanation for the ME/CFS groups’ unchanging HRV. Again, 

we recommend a future study with a longer data collection period. Home visits may also 

help to reduce stressors associated with attaching devices at the beginning of the study. 

Overall, the Oura Ring measures a multitude of clinically valuable data; however, 

it does so with intermittently occurring failures. In most cases, it is difficult to draw any 

robust conclusions from the Oura Ring data without a longer study and more samples. 

Another point worth noting is that the Oura Ring was calibrated on healthy people and 

was meant to be used as a tool to improve physical fitness. Score errors may have been 

produced simply by using this device to track diseased groups rather than the intended 

population. Regardless of the cause, we have seen numerous Oura Ring measurements 
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mark ME/CFS groups as “normal.” Additional measurements have shown the ME/CFS 

group to be unresponsive to the NASA Lean Test and ensuing PEM. 

 

6.6 Limitations of Results 

While results appear to be significant in some cases, they are not necessarily 

representative of the broader population. There are limitations on the generalizability of 

group UpTime ranges due to imperfect experiment design and insufficient sampling. 

Before beginning this study, we knew that our sample sizes were small enough to prevent 

us from generalizing our conclusions. However, we did not anticipate the device failures 

that caused our effective sample sizes to shrink even further. Both Shimmers and Oura 

Rings suffered from lost data, though individual device failure rates differed 

significantly.  

Most often, Oura Rings failed to record data the second day after the device was 

equipped (Figures 6.9, 6.12, & 6.15). The Oura Ring’s Activity Score requires several 

days of use before adjusting to the user’s activity level. This adjustment period caused the 

relevant collected data to be skewed for days 1-3. We recommend that future studies 

equip each subject with an Oura Ring a full week in advance of the collection period to 

prevent either of these Oura Ring failures/shortcomings from impacting data analysis. 

As for Shimmers, failures occurred randomly. The cause of gaps remains 

unknown. Fortunately, the validation of single-Shimmer data allowed us to salvage 72% 

of data that would have otherwise been lost as a result of these failures. It is 

recommended that researchers pursue in-house development of a custom IMU device for 

future UpTime-related studies. A custom device may function with a substantially lower 
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failure-rate than the Shimmers. Additionally, we recommend that researchers randomize 

the use of specific IMU devices to eliminate remaining biases in collected data. 

The final limitation comes from the period selected for data collection. As we 

have identified, weekdays differ from the weekend in terms of activity, sleep, and other 

clinical outcomes. Regularly occurring trends made it difficult to accurately determine 

what portion of observed changes were caused by the NASA Lean Test. Future studies 

should randomize each subject’s start day to remove day of the week as a confounding 

factor. This randomization was not done in our study because the BHC is only open 

Monday through Thursday, and it was vital to minimize study costs due to a lack of 

external funding.  

 

6.7 Evaluation of UpTime Variability 

In this section, we briefly address variations in UpTime measurements. When 

separated by group, the data collected in the case-control study has both day-to-day and 

subject-to-subject variability. Day-to-day variability describes the differences in UpTime 

scores caused by specific days of the week; this would include differences between 

weekday UpTime and weekend UpTime. Subject-to-subject variability describes 

differences in UpTime scores seen between the five subjects in each group. We can 

compare absolute UpTime variability using standard deviations as shown in Table 6.7. 

For all disease groups, Table 6.7 shows that subject-to-subject variations exceed 

day-to-day variations. This hierarchy of variation is also shown in Figure 6.16, where 

daily UpTime means are more closely clustered together than subject UpTime scores for 

each day. 
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Table 6.7. Standards of deviation for collected UpTime data. 

Variability Type 

Standards of Deviation 

Control 
Moderate 
ME/CFS 

Severe ME/CFS 

Day-to-day 4.04 2.52 3.79 

Subject-to-subject 10.98 8.08 7.03 

 

 

 

 

 

 

Figure 6.16. UpTime means and confidence intervals for each day of the week. 

Days correspond to Monday through Saturday. UpTime grouped according to 

disease level (a-c). Individual UpTime trends plotted by group (d-f).  
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In terms of day-to-day variation, Figure 6.16(a) shows that the control group’s 

UpTime scores drop over the weekend. Furthermore, the control group has the greatest 

day-to-day UpTime variability of all three disease levels. Both ME/CFS groups have day-

to-day variability, but this appears to be due to random variability rather than weekly 

trends (Figure 6.16(a & b)). Another day-to-day variability trend seen for the ME/CFS 

groups is that days one and four—the two days subjects were required to travel to the 

BHC during the study—correspond to local mean UpTime maximums. As was 

previously recommended, necessary subject interaction (e.g., IMU device attachment, 

NASA 10-minute Lean Test) could be done at each subject’s home to minimize day-to-

day UpTime variability for the ME/CFS groups. 

We expected subject-to-subject UpTime variation to be greatest for the control 

group, given that they have the widest range of expected UpTime scores. This is 

confirmed by the results of Table 6.7. Figure 6.16(d-f) shows that the control group’s 

UpTime scores have the widest spread of all three disease levels. Table 6.7 shows that 

subject-to-subject UpTime variation decreases as ME/CFS disease level increases in 

severity. 

This leads us to another evaluation of UpTime variation that is especially useful 

in a clinical application. When evaluating treatment efficacy, it is necessary to distinguish 

between a patient’s day-to-day UpTime variability and UpTime changes caused by a 

treatment; this can be done using a control chart. While control charts are generally used 

to monitor a process, they can also be used to evaluate performance improvement post-

treatment. An I-Chart is a type of control chart with two phases. Phase I uses historical 

data (before a treatment) to create upper and lower control limits. Phase II data (after 
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treatment) can then compared against this historical baseline to see if the treatment 

signals additional variation beyond the controlled variation seen in Phase I. In future full-

scale studies, this process can be used to evaluate treatment efficacy. If a change is 

identified, it can then be tested using a paired t-test. This same approach can be used to 

monitor patient improvement over time. 

 

6.8 Conclusion 

Regardless of device and experimental design weaknesses, many of the results of 

this preliminary study appear promising. While previous research showed that HUA 

differed by disease group, further analysis was required due to the weaknesses of HUA as 

an assessment of upright activity. In this research, we have used IMU-based UpTime 

measurements to conclusively show that upright activity differs significantly by disease 

group, thus validating UpTime as an efficacy endpoint for ME/CFS. Despite our 

expectations, the NASA Lean Test did not cause significant UpTime reductions, although 

we did see a clear decreasing trend over the weekend for controls. We suspect that the 

diseased groups’ unchanging UpTimes pre- and post-Lean Tests are due to the 

unintentionally high stress caused at the start of the study; unchanged UpTimes could 

also be the result of subject medication.  

By comparing HUA to UpTime, we have shown that the two are poorly 

correlated. Specifically, the control group was able to estimate UpTime with some level 

of accuracy, but both ME/CFS groups reported inaccurate levels of upright activity. This 

non-correlation further proves the value of UpTime as an objectively measured clinical 

outcome.  
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Oura Rings were used with varying rates of success. Despite device failures, we 

made several claims that could prove useful in guiding more extensive future studies. 

Analysis of lowest resting HR indicated that the moderate and severe ME/CFS groups 

were clustered separately, highlighting the differences between disease levels. All groups 

showed decreasing Activity Scores throughout the week. This is understood to be an 

effect of the method the Oura Ring uses to acclimate to each individual’s activity level. 

Even so, when compared to the control group, the diseased groups appeared to have 

lower Activity Scores on days 5 and 6. Further research is required to draw any 

substantial conclusions regarding the Oura Ring’s Activity Score. Lastly, the invariant 

HRV scores of ME/CFS groups could be due to the floor effect. Alternatively, PEM 

could have been induced on day 1, thereby preventing the possibility of change in HRV 

scores before and after the NASA Lean Test. 
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CHAPTER 7 

 

CONCLUSION 

 

7.1 Conclusions & Contributions 

The main purpose of this research was to determine the accuracy of IMU-based 

UpTime measurements. Once verified, UpTime was used to evaluate two potential 

efficacy endpoints for ME/CFS. These endpoints are (1) the amount of time an individual 

spends upright and active, and (2) the extent to which individuals with ME/CFS 

experience unrefreshing sleep. HUA questionnaires are the current clinical standard for 

assessing time spent upright and active. Fundamentally, HUA is an inaccurate estimator 

of activity and is further limited by its low resolution—it is reported as a whole number 

of hours. To improve the method used to assess upright activity—our primary efficacy 

endpoint—we developed an IMU-based assessment of upright activity, which we call 

UpTime.  

UpTime is an objective measurement of upright activity, which is based on a 

continuous assessment of lower leg angle. In this thesis, we have provided evidence 

supporting the accuracy of this measurement method. UpTime uses a critical angle of 39 

degrees from vertical as a threshold to divide posture into two categories: (1) upright and 

(2) not upright. 

As part of this research, we planned and executed a six-day study with 15 subjects 
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divided equally into three groups—control, moderate ME/CFS, and severe ME/CFS. 

Analysis of the UpTime data collected during this study indicates that these groups spend 

different proportions of their days upright and active. Healthy individuals are expected to 

have weekly UpTime scores above 30%, subjects with moderate ME/CFS are expected to 

have weekly UpTime scores between 20% and 30%, and subjects with severe ME/CFS 

are expected to have weekly UpTime scores below 20%. To ensure that these results have 

not been significantly confounded by activity trends relating to days of the week, future 

studies should randomize each subject’s start day. Future studies should also cover an 

extended period beyond the six-day limit of our initial study. 

Another objective of our study was to evaluate the effects of PEM brought on by 

the NASA Lean Test. However, our results showed no change in UpTime before and 

after the NASA Lean Test. Although this contradicts our expectations, we have 

confirmed that this test is humane; patients with ME/CFS do what they can to avoid 

stress-causing exertion, but we have seen that this test does not cause a drastic decrease in 

UpTime—indicating that the test does not substantially hurt them. While further 

investigation is beyond the scope of this thesis, future studies should incorporate home-

visits to reduce the stress caused by participation, thereby ensuring that PEM is only 

induced during the Lean Test. 

Due to an unexpectedly high Shimmer failure rate, 20% of all days had data from 

only one leg. After further analysis, we were able to validate the calculation of UpTime 

using only one Shimmer. The ability to measure UpTime using a single IMU device 

provides the possibility to reduce device-related costs associated with measuring 

UpTime. Furthermore, subjects could attach the device to the leg of their choice, thereby 
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increasing overall comfort. 

We used Oura Rings to address our secondary efficacy endpoint—unrefreshing 

sleep. Among other less useful measurement types, the Oura Ring took daily 

measurements of Awake Time, HRV, and Hours of Sleep throughout the study. Analysis 

of these measurements showed that the NASA Lean Test had no significant effect on 

sleep quality for diseased groups—meaning that sleep was not shown to be any more or 

less refreshing while PEM was induced. In many cases, both healthy and diseased 

individuals had comparable measurements, indicating that sleep requirements may not 

differ by group. In terms of resting HR and HRV, Oura Ring measurements showed 

significant differences between the moderate and severe ME/CFS groups. 

This research shows the value of UpTime as an objective replacement for HUA. 

While there are numerous smart devices with integrated IMUs available, most are 

designed to help healthy individuals achieve fitness goals. No existing smart device is 

specifically designed to be used on the lower leg for the evaluation of ME/CFS clinical 

indicators; hence the need to develop and validate an IMU-based assessment of ME/CFS 

disease severity, UpTime. If the conclusions of this research are confirmed in future full-

scale studies, accurate UpTime measurements could become a valuable asset for 

healthcare providers in assisting ME/CFS patients. Furthermore, UpTime provides a 

method for pharmaceutical companies and independent researchers to prove the efficacy 

of their treatments—an important step towards receiving FDA-approval. The BHC’s data 

shows that patients with severe ME/CFS are limited to a bed or reclining chair for all but 

five hours each day; increasing this number would be life-changing. 
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7.2 Future Work 

This thesis has identified a host of pathways for directing future work. Most 

pertinent to this research is the need to use IMU-based UpTime measurements to evaluate 

treatment efficacy. The FDA recommends recording subject data for three months to 

avoid data skewing caused by weekly trends. The BHC has several treatment protocols 

that they have found to help aid recovery for patients with ME/CFS. Confirmation of 

treatment efficacy via UpTime would be a monumental step towards recovery for all 

people suffering from ME/CFS. 

Although evaluating UpTime is a good approach to assessing ME/CFS disease 

severity, UpTime could be improved by adding depth and expanding its application. 

Beyond identifying body postures as upright or not upright, additional benefits could 

come from using machine learning algorithms to identify specific activities such as 

standing still, sitting in a chair with feet on the floor, driving a car, walking, running, etc. 

simply by using the lower leg angles provided by the method documented in this thesis.  

So far, UpTime has only been used as a tool for evaluating disease symptom 

improvement. Future research could investigate the possibility of using UpTime, in 

conjunction with other measurements, to diagnose ME/CFS—a process that is 

continuously evolving as the scientific community’s understanding of the disease 

improves. 

Augmenting UpTime by adding sensors to other parts of the body could provide 

more detailed activity assessments. Another unexplored realm is the potential to improve 

device efficiency by changing the tools used to measure lower leg angle. Switching from 

a 9-axis IMU to an inclinometer could improve battery life for any future custom 
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UpTime-measuring devices. 

The genesis of this research was the BHC approaching the Inertial Self-Powered 

Sensing Lab at the University of Utah about developing a measurement of upright 

activity. Now that this method has been developed, commercialization could benefit other 

disease groups, such as those with fibromyalgia and the geriatric segment of the general 

population. Furthermore, a commercialized UpTime-based product could also be an 

effective way for medical professionals to more closely and accurately monitor patients 

as they go through the process of rehabilitation from any number of diseases, injuries, or 

other procedures. 
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APPENDIX 

 

A GAP CHECK (MATLAB) 
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 In section 5.3.1 of this thesis, we describe the process used to check IMU data 

collected from a Shimmer for gaps. This was done using the MATLAB script below: 

 

%% --- GAP CHECK ---------------------------------------------------- % 
% 

% This MATLAB script compares the timestamps of consecutive  

% measurements to make sure there are no gaps in the file. If gap(s)  
% is/are found, the location(s) within the file(s) is/are displayed. 

  
clear  
clc 
  

 
%% --- Import CSV file and isolate date/time data ------------------- % 

 
    % Read .csv file to table (file location will vary) 
    T = readtable('C:\Users\turne\OneDrive - University of Utah\School\ 

  Research\Final Study\Shimmer Data (Days)\01_D1_L.csv'); 

  
    % Isolate column with date/time data 
        % Change T from table to array using specified format 
        T = table2array(T(2:end,2));     
            infmt = 'hh:mm:ss.SSS'; 
            outfmt = 'hh:mm:ss'; 
        % Change T from array to durations 
        T = duration(T,'InputFormat',infmt,'Format',outfmt);     

  
    % Break durations into pieces to isolate Seconds ('s') 
    [h,m,s] = hms(T); 
  

 
%% --- Check for gaps in seconds vector, i.e., look for an increase in  

's' greater than 1 -------------------------------------------- % 

  
    % Iterate through entire 's' vector 
    for i = 2:length(s) 
        % Identify whether gap is greater than or less than 1 
        if s(i) - s(i-1) > 1     
            % Print error message if gap is greater than 1  
            %(also state the gap's location within the trial) 
            Message = "!!!!!!! GAP AFTER ROW("+ (i-1) + ") !!!!!!!"      
        end 
    end 

     
    % Print message indicating that the check is complete 
    Message = "Gap check = complete" 

  
    % Notification to indicate script has completed 
    load gong 
    sound(y,Fs)  
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B ALIGN DAYS (MATLAB) 
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 Section 5.3.1 also describes a preprocessing step where paired days are aligned. 

The MATLAB script which accomplishes this task is included below: 

 

%% --- ALIGN TRIALS ------------------------------------------------- % 
% 

% This MATLAB script edits data from both leg to  
% make sure that both datasets have the same number of rows. 

  
clear;clc 
  

 
%% --- Import files and prepare data -------------------------------- % 
    filename_L = 'C:\Users\turne\OneDrive - University of Utah\School\ 

Research\Final Study\Shimmer Data (Days)\ 

01_D1_L.csv'; 

    filename_R = 'C:\Users\turne\OneDrive - University of Utah\School\ 

Research\Final Study\Shimmer Data (Days)\ 

01_D1_R.csv'; 

  
    % Read both .csv files to corresponding tables 
    L = readtable(filename_L); 
    R = readtable(filename_R); 

  
    % Display first and last entries in each file 
    L(2,:) 
    R(2,:) 
    L(end,:) 
    R(end,:) 

  
    % Define each file's length 
    rL = height(L) 
    rR = height(R) 

  
    % Determine the difference in file lenghts (d). 
    if rL > rR 
        d = rL - rR 
    else 
        d = rR - rL 
    end 

 

 
%% --- Edit the file with more rows --------------------------------- % 

  
    % Enter this if-statement if the Left file is longer 
    if rL > rR 
        while d ~= 0 
            % L is longer --> Cut rows of L to match R 
            i = [];i = rL:-ceil(rL/d):ceil(rL/d); 
            L(i,:) = []; 
            rL = height(L); 
            % Display number of rows to cut out of L to match R 
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            d = rL - rR;     
        end 
        % overwrite existing left .csv file with edited table 
        writetable(L,filename_L,'Delimiter','tab'); 

     
    % Enter this elseif-statement if the Right file is longer 
    elseif rR > rL 
        while d > 0 
            % R is longer --> Cut rows of R to match L 
            i = [];i = rR:-ceil(rR/d):ceil(rR/d); 
            R(i,:) = []; 
            rR = height(R); 
            % Display number of rows to cut out of R to match L 
            d = rR - rL;     
        end 
        % overwrite existing right .csv file with edited table 
        writetable(R,filename_R,'Delimiter','tab'); 

     
    % Enter this elseif-statement if the files are the same length 
    elseif rL == rR 
        % Display the difference in file lengths, zero. 
        d 
    end 
  

 
%% --- Print details of revised table(s) ---------------------------- % 

  
    % Number of rows in each table 
    rL = height(L) 
    rR = height(R) 

     
    % Logical comparison of table rows 
    rL == rR 

  
    % Display first and last entries in each file 
    L(2,:) 
    R(2,:) 
    L(end,:) 
    R(end,:) 

  
    % Notification to indicate script has completed 
    load gong 
    sound(y,Fs) 
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C DAY PROCESSOR (MATLAB) 
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Section 5.3.2 describes the method used to process formatted CSV files. The main 

MATLAB file, “Day Processor,” calls four functions (included in the proceeding 

appendices) to convert sensor data to daily UpTime scores. The Day Processor script 

used to accomplish this task is included below: 

 

%% --- DAY PROCESSOR ------------------------------------------------ % 
% 
% This MATLAB script converts preprocessed Shimmer files into daily  

% UpTime scores. Only one subject's data can be processed at a time.  
% However, any combination of days can be processed at once. 

  
clear 
clc 

  

  
%% --- Define Days to be Processed ---------------------------------- % 

  
    % Subject 01 - 15 
    Subject = '01';                 

     
    % Days [1 2 3 4 5 6] 
    Days = [1 2 3 4 5 6];    

     
    % Workstation: Mac, PC, or Duffman 
    Source = 'Duffman';            

     

  
%% --- Read & Format Data ------------------------------------------- % 

  
    % Build filenames based on selected Source 
    switch Source 
        case 'Mac' 
            Source = '/Users/turnerpalombo/OneDrive - University of  

    Utah/School/Research/Final Study/Shimmer Data  

    (Days)/'; 

        case 'PC' 
            Source = 'C:\Users\turne\OneDrive - University of  

    Utah\School\Research\Final Study\Shimmer Data  

    (Days)\'; 
        case 'Duffman' 
            Source = 'D:\Turner\OneDrive - University of  

    Utah\School\Research\Final Study\Shimmer Data  

    (Days)\'; 
        otherwise 
            error('Unrecognized source') 
    end 

  
    % Add to filenames based on selected Days 
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        % If Days includes 1 
        if any(Days(:) == 1) 
            Day = 1; 
            [D1_L, D1_R] = fileimport(Source, Subject, Day); 
        end 
        % If Days includes 2 
        if any(Days(:) == 2) 
            Day = 2; 
            [D2_L, D2_R] = fileimport(Source, Subject, Day); 
        end 
        % If Days includes 3 
        if any(Days(:) == 3) 
            Day = 3; 
            [D3_L, D3_R] = fileimport(Source, Subject, Day); 
        end 
        % If Days includes 4 
        if any(Days(:) == 4) 
            Day = 4; 
            [D4_L, D4_R] = fileimport(Source, Subject, Day); 
        end 
        % If Days includes 5 
        if any(Days(:) == 5) 
            Day = 5; 
            [D5_L, D5_R] = fileimport(Source, Subject, Day); 
        end 
        % If Days includes 6 
        if any(Days(:) == 6) 
            Day = 6; 
            [D6_L, D6_R] = fileimport(Source, Subject, Day); 
        end 

         

         
%% --- Calculate Angles (Kalman filter) ----------------------------- % 

  
    % Define IMU (Shimmer) sample rate 
    sample_rate = 30; % [Hz] 

     
    % convert Subject from string to number 
    subject = str2num(Subject); 

  
    % Convert IMU data to Leg Angles 
    % 
    % For each day, this process includes three steps: 
    % (1) Define Shimmer Gain, based on specific device used 
    % (2) Using Kalman filter, calculate Left angles 
    % (3) Using Kalman filter, calculate Right angles 
        % If Days includes 1 
        if any(Days(:) == 1) 
            [ShimmerGain_L, ShimmerGain_R] = shimmergain(subject, 1); 
            D1_L = kalmanfilter(D1_L,sample_rate,ShimmerGain_L); 
            D1_R = kalmanfilter(D1_R,sample_rate,ShimmerGain_R); 
        end 
        % If Days includes 2 
        if any(Days(:) == 2) 
            [ShimmerGain_L, ShimmerGain_R] = shimmergain(subject, 2); 
            D2_L = kalmanfilter(D2_L,sample_rate,ShimmerGain_L); 
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            D2_R = kalmanfilter(D2_R,sample_rate,ShimmerGain_R); 
        end 
        % If Days includes 3 
        if any(Days(:) == 3) 
            [ShimmerGain_L, ShimmerGain_R] = shimmergain(subject, 3); 
            D3_L = kalmanfilter(D3_L,sample_rate,ShimmerGain_L); 
            D3_R = kalmanfilter(D3_R,sample_rate,ShimmerGain_R); 
        end 
        % If Days includes 4 
        if any(Days(:) == 4) 
            [ShimmerGain_L, ShimmerGain_R] = shimmergain(subject, 4); 
            D4_L = kalmanfilter(D4_L,sample_rate,ShimmerGain_L); 
            D4_R = kalmanfilter(D4_R,sample_rate,ShimmerGain_R); 
        end 
        % If Days includes 5 
        if any(Days(:) == 5) 
            [ShimmerGain_L, ShimmerGain_R] = shimmergain(subject, 5); 
            D5_L = kalmanfilter(D5_L,sample_rate,ShimmerGain_L); 
            D5_R = kalmanfilter(D5_R,sample_rate,ShimmerGain_R); 
        end 
        % If Days includes 6 
        if any(Days(:) == 6) 
            [ShimmerGain_L, ShimmerGain_R] = shimmergain(subject, 6); 
            D6_L = kalmanfilter(D6_L,sample_rate,ShimmerGain_L); 
            D6_R = kalmanfilter(D6_R,sample_rate,ShimmerGain_R); 
        end     

  

     
%% --- Calculate UpTime --------------------------------------------- % 

  
    % Define critical angle 
    critical_angle = 39; %[degrees] 

  
    % Initialize a column of zeros to be filled with UpTimes 
    UpTime = zeros(6,1); 

  
    % For each Day, calculate UpTime using paired Left and Right data 
        % If Days includes 1 
        if any(Days(:) == 1) 
            [D1_UpTime] = UpTime(D1_L,D1_R,critical_angle); 
            UpTime(1) = D1_UpTime; 
        end 
        % If Days includes 2 
        if any(Days(:) == 2) 
            [D2_UpTime] = UpTime(D2_L,D2_R,critical_angle); 
            UpTime(2) = D2_UpTime; 
        end 
        % If Days includes 3 
        if any(Days(:) == 3) 
            [D3_UpTime] = UpTime(D3_L,D3_R,critical_angle); 
            UpTime(3) = D3_UpTime; 
        end 
        % If Days includes 4 
        if any(Days(:) == 4) 
            [D4_UpTime] = UpTime(D4_L,D4_R,critical_angle); 
            UpTime(4) = D4_UpTime; 
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        end 
        % If Days includes 5 
        if any(Days(:) == 5) 
            [D5_UpTime] = UpTime(D5_L,D5_R,critical_angle); 
            UpTime(5) = D5_UpTime; 
        end 
        % If Days includes 6 
        if any(Days(:) == 6) 
            [D6_UpTime] = UpTime(D6_L,D6_R,critical_angle); 
            UpTime(6) = D6_UpTime; 
        end 

         
    % Display UpTime vector for all days     
    disp('---------------------------------'); 
    disp(UpTime) 
    disp('---------------------------------'); 

  
    % Notification to indicate script has completed 
    load gong 
    sound(y,Fs) 
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D FILE IMPORT (MATLAB) 
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File Import is the first function called by the Day Processor script (Appendix C). 

This custom file-importing function was created to manage data processing, given the 

number of Shimmer failures which occurred during our study. File Import is shown 

below: 

 

%% --- FILE IMPORT -------------------------------------------------- % 
% 
% This MATLAB function imports specified files. Once imported, these  

% files are formatted to minimize RAM usage. If a requested file is  
% marked as "too short" (due to Shimmer failure), a matrix of zeros is  
% created in its place. 

  
function [L, R] = fileimport(Source, Subject, Day) 

  
% Convert Day from string to number 
Day = num2str(Day); 

  
% Define files to be imported 
Filename_L = [Source Subject '_D' Day '_L.csv']; 
Filename_R = [Source Subject '_D' Day '_R.csv']; 

  
% Convert Subject from string to number 
Subject = str2num(Subject); 

  
% Check for files marked as too short due to Shimmer failure, aka BAD 

    % If Left Data is BAD 
    if (Subject==4  &&... 

  (Day=='1'||Day=='2'||Day=='3'||Day=='4'||Day=='5'))||... 
       (Subject==9  && (Day=='3'))||... 
       (Subject==12 && (Day=='4'||Day=='5'))||... 
       (Subject==14 && (Day=='4'||Day=='5'||Day=='6'))||... 
       (Subject==15 && (Day=='5'||Day=='6'))    
        R = readmatrix(Filename_R); 
        % Delete unused columns of data 
        R(:,[1,2,9]) = []; 
        % Replace BAD file with matrix of zeros 
        L = zeros(size(R)); 
    % If Right Data is BAD 
    elseif (Subject==3  && (Day=='1'||Day=='2'||Day=='3'))||... 
           (Subject==5  && (Day=='2'||Day=='3'))||... 
           (Subject==12 && (Day=='6')) 
        L = readmatrix(Filename_L); 
        % Delete unused columns of data 
        L(:,[1,2,9]) = []; 
        % Replace BAD file with matrix of zeros 
        R = zeros(size(L)); 
    % If both files are GOOD (sufficient length) 
    else 
        R = readmatrix(Filename_R); 
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        % Delete unused columns of data 
        R(:,[1,2,9]) = []; 
        L = readmatrix(Filename_L); 
        % Delete unused columns of data 
        L(:,[1,2,9]) = []; 
    end 

  
% Some Shimmer files exported with an extra column of NaN entries 
    % Check for and delete these columns 
    if isnan(L(1,1)) 
        L(1,:) = []; 
    end 
    if isnan(R(1,1)) 
        R(1,:) = []; 
    end 
end 
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E SHIMMER GAIN (MATLAB) 
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Shimmer Gain is the second function called by the Day Processor script 

(Appendix C). In our study, we used six different Shimmers. Each Shimmer has a unique 

device ID. This function was created as a repository containing information detailing 

which Shimmer was used for each day of the study. By identifying which Shimmer was 

used, we can then set the appropriate gain—as each Shimmer appeared to vary slightly in 

terms of measurement magnitudes. The Shimmer Gain function is shown below: 

 

%% --- SHIMMER GAIN ------------------------------------------------- % 
% 
% This MATLAB function contains information detailing which Shimmer was 
% used for each Subject on each Day. Corresponding Shimmer Gains are 
% returned based on the queried days. 

  
function [ShimmerGain_L, ShimmerGain_R] = shimmergain(Subject, Day) 

  
% Identify Phase of study based on Day 
if Day < 4 
    Phase = 1; 
else 
    Phase = 2; 
end 

  
% Build reference tables for Shimmer IDs used on each days 
    S = [repmat(1,2,1);  repmat(2,2,1);  repmat(3,2,1);... 
         repmat(4,2,1);  repmat(5,2,1);  repmat(6,2,1);... 
         repmat(7,2,1);  repmat(8,2,1);  repmat(9,2,1);... 
         repmat(10,2,1); repmat(11,2,1); repmat(12,2,1);... 
         repmat(13,2,1); repmat(14,2,1); repmat(15,2,1)]; 

  
    P = [1; 2];P = repmat(P,15,1); 

  
    Shimmer_L = ['E11B';'E0EB';'E11B';'E0EB';'E11B'; 
                 'E0EB';'E0EB';'E0EB';'C71E';'E11B'; 
                 'E0EB';'E11B';'E11B';'C71E';'C71E'; 
                 'E0EB';'E0EB';'C71E';'E0EB';'E11B'; 
                 'C71E';'E0EB';'E11B';'C71E';'E11B'; 
                 'C71E';'E11B';'C71E';'?   ';'E11B']; 

  
    Shimmer_R = ['DC5F';'DCFB';'DC5F';'DCFB';'DC5F'; 
                 'DCFB';'DCFB';'C722';'C722';'DC5F'; 
                 'DCFB';'DC5F';'DC5F';'C722';'DCFB'; 
                 'C722';'C722';'DCFB';'DCFB';'DC5F'; 
                 'C722';'DCFB';'DC5F';'C722';'DC5F'; 
                 'DCFB';'DC5F';'C722';'?   ';'DC5F']; 
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    sid.L = table(S, P, Shimmer_L); 
    sid.R = table(S, P, Shimmer_R); 

  
    if Phase == 1 
        i = 2*Subject - 1; 
    else 
        i = 2*Subject; 
    end 

  
% Select ShimmerID from reference table 
ShimmerID_L = sid.L{i,3}; 
ShimmerID_R = sid.R{i,3}; 

  
% Define Gains for each Shimmer 
C71E = 0.86; 
C722 = 0.83; 
DC5F = 0.77;% 
DCFB = 0.81;% 
E0EB = 0.77;% 
E11B = 0.76;% 

  
% Set ShimmerGain based on ShimmerID 
switch ShimmerID_L 
    case 'C71E' 
        ShimmerGain_L = C71E; 
    case 'C722' 
        ShimmerGain_L = C722; 
    case 'DC5F' 
        ShimmerGain_L = DC5F; 
    case 'DCFB' 
        ShimmerGain_L = DCFB; 
    case 'E0EB' 
        ShimmerGain_L = E0EB; 
    case 'E11B' 
        ShimmerGain_L = E11B; 
    otherwise 
        error('Unrecognized source') 
end 
switch ShimmerID_R 
    case 'C71E' 
        ShimmerGain_R = C71E; 
    case 'C722' 
        ShimmerGain_R = C722; 
    case 'DC5F' 
        ShimmerGain_R = DC5F; 
    case 'DCFB' 
        ShimmerGain_R = DCFB; 
    case 'E0EB' 
        ShimmerGain_R = E0EB; 
    case 'E11B' 
        ShimmerGain_R = E11B; 
    otherwise 
        error('Unrecognized source') 
end 
end 
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F KALMAN FILTER (MATLAB) 
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The Kalman filter function is the third function called by the Day Processor script 

(Appendix C). In this function, Shimmer data is converted to roll and pitch angles via a 

Kalman filter. These roll and pitch angles are combined into a single vector of leg angles 

representing the tilt from vertical using quaternions. The Kalman filter function is shown 

below: 

 

%% --- KALMAN FILTER ------------------------------------------------ % 
%  
% This MATLAB function uses Phillip Salmony's Kalman filter to convert 
% Shimmer data to lower leg angles.  
% 
% (http://philsal.co.uk/projects/imu-attitude-estimation) 

  
function [angle] = kalmanfilter(Shimmer_data, Sample_rate,Shimmer_gain) 

  
% --- Format Data & Create Estimations ------------------------------ % 

  
    % Define timestep between each measurement 
    dt = 1/Sample_rate; % [seconds] 

  
    % Filter Accelerometer Data: 10 Hz second-order low-pass 
    [b, a] = butter(2,10/( Sample_rate* 0.5), 'low'); 
    Shimmer_data(:,1:6) = filter(b,a,Shimmer_data(:,1:6)); 

  
    % Break up Shimmer_data 
        % Accelerometer 
        Ax = Shimmer_data(:,1); 
        Ay = Shimmer_data(:,2); 
        Az = Shimmer_data(:,3); 
        % Gyroscope 
        Gx = Shimmer_data(:,4); 
        Gy = Shimmer_data(:,5); 
        Gz = Shimmer_data(:,6); 

  
    % Convert gyroscope data to radians 
    Gx_rad = Gx*(pi/180); 
    Gy_rad = Gy*(pi/180); 
    Gz_rad = Gz*(pi/180); 

  
    % Trigonometric estimations of roll and pitch using raw Acc data 
    phi_hat_acc   = atan2( Ay, sqrt(Ax .^ 2 + Az .^ 2)); 
    theta_hat_acc = atan2(-Ax, sqrt(Ay .^ 2 + Az .^ 2)); 

         

  
% --- Kalman Filter ------------------------------------------------- % 
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    LENGTH = length(Gx_rad); 

  
    % State-Space form of Kalman filter 
    A = [ 1 -dt   0   0; 
          0   1   0   0; 
          0   0   1 -dt; 
          0   0   0   1]; 

  
    B = [dt   0   0   0; 
          0   0  dt   0]'; 

  
    C = [ 1   0   0   0; 
          0   0   1   0]; 

  
    % P = Error Covariance Matrix 
    % Initially set by us, then updated by the Kalman Filter.  
        % Large values = unsure if initial state is correct. 
        % Small values = confident that initial guess is correct. 
    P = eye(4) * 1;  

  
    % Q = Process Covariance Matrix 
    % Tells filter how sure we are about model dynamics. 
        % Large values = Model is inaccurate. 
        % Small values = Model is accurate. 
    Q = eye(4) * 0.01; 

  
    % R = Measurement Noise Covariance Matrix 
    % Set depending on noise of the sensors used in the system. 
    % (based on details in IMU datasheet) 
        % Large values = Greater sensor noise. 
        % Small values = Minimal sensor noise. 
    R = eye(2) * 10; 

  
    % Initial value estimate 
    state_estimate = [pi/2 0 0 0]'; 

  
    % Initialize vectors 
    phi        = zeros(1, LENGTH); 
    bias_phi   = zeros(1, LENGTH); 
    theta      = zeros(1, LENGTH); 
    bias_theta = zeros(1, LENGTH); 

  
    % Kalman filter loop 
    for i=2:LENGTH 

  
        p = Gx_rad(i); 
        q = Gy_rad(i); 
        r = Gz_rad(i); 

  
        phi_hat   = phi(i - 1); 
        theta_hat = theta(i - 1); 

  
        % Generate input vector based on Gyroscope 
        phi_dot   = p... 
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                  + sin(phi_hat) * tan(theta_hat) * q ... 
                  + cos(phi_hat) * tan(theta_hat) * r; 

  
        theta_dot = cos(phi_hat) * q ... 
                  - sin(phi_hat) * r; 

  
        % Predict 
        state_estimate = A * state_estimate ... 
                       + B * [phi_dot, theta_dot]'; 

  
        P = A * P * A' + Q; 

  
        % Update 
        measurement = [phi_hat_acc(i) theta_hat_acc(i)]'; 

  
        y_tilde = measurement ... 
                - C * state_estimate; 

  
        S = R + C * P * C'; 
        K = P * C' * (S^-1); 

  
        state_estimate = state_estimate ... 
                       + K * y_tilde; 

  
        P = (eye(4) - K * C) * P; 

  
        phi(i)        = state_estimate(1); 
        bias_phi(i)   = state_estimate(2); 
        theta(i)      = state_estimate(3); 
        bias_theta(i) = state_estimate(4); 

  
    end 

  
% --- Format Angles to be returned by function ---------------------- % 

  
    % Convert phi and theta to single angle output using quaternions 
    roll  = pi/2 - phi; 
    pitch = theta; 

  
    qr =   cos(roll/2) .* cos(pitch/2); 
    qi =   sin(roll/2) .* cos(pitch/2); 
    qj =   cos(roll/2) .* sin(pitch/2); 
    qk = - sin(roll/2) .* sin(pitch/2); 

  
    angle = 2*atan2( sqrt(qi.^2 + qj.^2 + qk.^2 ), qr); 

  
    % Convert angle from radians to degrees  
    % (adjust for gain to match Shimmer to VICON) 
    angle = angle*(180/pi)*Shimmer_gain; 

  
    % Set Maximum angle to 180 degrees 
    parfor i = 1:LENGTH 
        if angle(i) > 180 
            angle(i) = 180;  
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        end 
    end 
end 
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G UPTIME (MATLAB) 
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UpTime is the fourth function called by the Day Processor script (Appendix C). 

This function calculates UpTime, as a percentage of the day spent upright, by comparing 

both leg angles to the critical angle at each point in time. This function is shown below: 

 

%% --- UPTIME CALCULATOR -------------------------------------------- % 
% 
% This MATLAB function takes two equal-length vectors of angle  
% measurements and compares them to the critical angle to calculate  
% UpTime. The critical angle indicates which angles are considered  

% "upright". All angles are measured as degrees from vertical.  
%  
% Vertical = 0 degrees 
% Horizontal = 90 degrees 

  
function [UpTime] = UpTime(L, R, critical_angle) 

  
% Initialize UpTime_vec 
UpTime_vec = zeros(1,length(L)); 

  
% For each angle measurement, determine the "uprightness" of each leg 
for i = 1:length(L) 

     
    % If only the Left leg is upright (elevated above critical angle) 
    if L(i) > critical_angle && R(i) < critical_angle 
        % Assign a value of 0.5, essentially averaging uprightness 
        UpTime_vec(i) = 0.5; 

     
    % If only the Right leg is upright (elevated above critical angle) 
    elseif L(i) < critical_angle && R(i) > critical_angle 
        % Assign a value of 0.5, essentially averaging uprightness 
        UpTime_vec(i) = 0.5; 

     
    % If both legs are upright (elevated above critical angle) 
    elseif L(i) > critical_angle && R(i) > critical_angle 
        % Assign a value of 1 
        UpTime_vec(i) = 1; 

     
    % If neither leg is upright (both legs below critical angle) 
    else 
        % Assign a value of 0 
        UpTime_vec(i) = 0; 

     
    end     
end 

  
% Calculate UpTime as a percentage of the day spent upright 
UpTime = sum(UpTime_vec)/length(UpTime_vec)*100; % [%] 

  
end  
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